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The problem

Our goal: to solve the primal-dual pair of linear programs below.

(P)


minimize

x∈Rn
cTx

subject to Ax = b

x ≥ 0

(D)


maximize

u∈Rm
uTb

subject to uTA ≤ cT

u unrestricted

We will try to improve on the simplex algorithm by taking long
jumps across the feasible region for (D).

Motivation: the Ford–Fulkerson method, where a single
augmenting steps changes many variables at once.
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The direction-finding problem

Consider the following example:

(D)


maximize

u∈R2
3u1 + 3u2

subject to 2u1 + 4u2 ≤ 2

u1 − u2 ≤ 2

−4u1 + u2 ≤ 1

We are at the point u = (1, 0) and want to pick a direction v to go.

What is the best direction, and how do we find it?

Answer 1. (From calculus.) Gradient descent: take v
proportional to b = (3, 3), the cost vector.

Answer 2. We should also make sure we don’t accidentally
leave the feasible region.
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The linear program for v

We can find v using a linear program:

Objective function: we want to improve 3u1 + 3u2 as quickly
as possible, so we maximize 3v1 + 3v2.

Boundary conditions: At u = (1, 0), the constraint
2u1 + 4u2 ≤ 2 is tight, so we make sure we don’t violate it
and ask that

2v1 + 4v2 ≤ 0.

The constraints u1 − u2 ≤ 2 and −4u1 + u2 ≤ 1 are slack, so
we ignore them.

Scaling constraints: we just want a direction, not a
magnitude. So we limit v by asking that v1, v2 ≤ 1.

(Fine print: this only works if the coefficients in the objective function
uTb are nonnegative, but we can make sure that this holds.)
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The direction-finding linear program

The original LP, (D), leads to the auxiliary LP, (DRP):

(D)


maximize

u∈Rm
uTb

subject to uTA ≤ cT

u unrestricted

(DRP)


maximize

v∈Rm
vTb

subject to vTAJ ≤ 0T

v1, . . . , vm ≤ 1

(Here, J indexes constraints which are tight at the initial point u.)

In our example, we get:

(DRP)


maximize

v∈R2
3v1 + 3v2

subject to 2v1 + 4v2 ≤ 0

v1 ≤ 1

v2 ≤ 1
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The augmenting step

We can now do the primal-dual algorithm, just very badly.

1 Start at some solution to (D). (u1, u2) = (1, 0)

2 Write the direction-finding problem (DRP). (previous slide)

3 Solve (DRP) to find a direction v. We get (v1, v2) = (1,−1
2 )

4 Find the largest t such that u + tv is still feasible for (D).
2(u1 + tv1) + 4(u2 + tv2) ≤ 2 holds automatically

(u1 + tv1)− (u2 + tv2) ≤ 2 =⇒ t ≤ 2
3

−4(u1 + tv1) + (u2 + tv2) ≤ 1 =⇒ t ≥ − 9
10

Largest value of t allowed is t = 2
3 .

5 Replace u by u+ tv and go back to step 2. u+ 2
3v = ( 5

3 ,−
1
3 ).
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A made-up example

What this ideally looks like:

We stop when we reach a point where t = 0 and we cannot make
any further improvement.

In theory, the advantage is that we do many fewer iterations.

Right now, the disadvantage is that each iteration requires solving
its own LP. This is way too slow!
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The restricted primal

We fix this by coming up with a fourth linear program.

(P)


minimize

x∈Rn
cTx

subject to Ax = b

x ≥ 0

(RP)


minimize
x∈Rn,y∈Rm

y1 + · · ·+ ym

subject to AJxJ + Iy = b

x, y ≥ 0

(D)

{
maximize

u∈Rm
uTb

subject to uTA ≤ cT
(DRP)


maximize

v∈Rm
vTb

subject to vTAJ ≤ 0T

v1, . . . , vm ≤ 1
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Constructing the restricted primal

The restricted primal (RP) is the dual of (DRP), which is what we
called the direction-finding linear program.

It can also be obtained directly from (P):

First, delete all primal variables xj for which the j th dual
constraint is slack.

Then, add a new variable yi to the i th constraint, for every i .

Replace the objective function, instead minimizing
y1 + · · ·+ ym.

Independent motivation: (RP) has an objective value of 0 if and
only if AJxJ = b, x ≥ 0 has a solution, which is the complementary
slackness condition to see if u is optimal.
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Goal of the restricted primal

We will improve the primal-dual algorithm by solving (RP) instead
of (DRP).

(We’ll still be able to find the direction v from the optimal tableau
for (RP).)

Here’s why this will help:

Solving (DRP) requires starting from scratch every time:
whatever the optimal direction v was at the previous iteration,
it’s definitely not valid any more.

However, (RP) keeps its constraints the same, possibly adding
or removing variables, and it turns out that the optimal
solution to (RP) will be a valid starting point for the next
iteration of (RP).
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