Introd	

Primal-Dual Algorithm Math 482, Lecture 29

Misha Lavrov

April 17, 2020

Our goal: to solve the primal-dual pair of linear programs below.

$$(\mathbf{P}) \begin{cases} \underset{\mathbf{x} \in \mathbb{R}^{n}}{\text{minimize}} & \mathbf{c}^{\mathsf{T}} \mathbf{x} \\ \text{subject to} & A \mathbf{x} = \mathbf{b} \\ \mathbf{x} \geq \mathbf{0} \end{cases} \quad (\mathbf{D}) \begin{cases} \underset{\mathbf{u} \in \mathbb{R}^{m}}{\text{maximize}} & \mathbf{u}^{\mathsf{T}} \mathbf{b} \\ \text{subject to} & \mathbf{u}^{\mathsf{T}} A \leq \mathbf{c}^{\mathsf{T}} \\ \mathbf{u} \text{ unrestricted} \end{cases}$$

Our goal: to solve the primal-dual pair of linear programs below.

$$(\mathbf{P}) \begin{cases} \underset{\mathbf{x} \in \mathbb{R}^{n}}{\text{minimize}} & \mathbf{c}^{\mathsf{T}} \mathbf{x} \\ \text{subject to} & A \mathbf{x} = \mathbf{b} \\ \mathbf{x} \geq \mathbf{0} \end{cases} \quad (\mathbf{D}) \begin{cases} \underset{\mathbf{u} \in \mathbb{R}^{m}}{\text{maximize}} & \mathbf{u}^{\mathsf{T}} \mathbf{b} \\ \text{subject to} & \mathbf{u}^{\mathsf{T}} A \leq \mathbf{c}^{\mathsf{T}} \\ \mathbf{u} \text{ unrestricted} \end{cases}$$

We will try to improve on the simplex algorithm by taking *long* jumps across the feasible region for (D).

Our goal: to solve the primal-dual pair of linear programs below.

$$(\mathbf{P}) \begin{cases} \underset{\mathbf{x} \in \mathbb{R}^{n}}{\text{minimize}} & \mathbf{c}^{\mathsf{T}} \mathbf{x} \\ \text{subject to} & A \mathbf{x} = \mathbf{b} \\ \mathbf{x} \geq \mathbf{0} \end{cases} \quad (\mathbf{D}) \begin{cases} \underset{\mathbf{u} \in \mathbb{R}^{m}}{\text{maximize}} & \mathbf{u}^{\mathsf{T}} \mathbf{b} \\ \text{subject to} & \mathbf{u}^{\mathsf{T}} A \leq \mathbf{c}^{\mathsf{T}} \\ \mathbf{u} \text{ unrestricted} \end{cases}$$

We will try to improve on the simplex algorithm by taking *long* jumps across the feasible region for (D).

Motivation: the Ford–Fulkerson method, where a single augmenting steps changes many variables at once.

Introduction	The direction-finding problem	The augmenting step	The restricted primal
0	●00	00	
The direc	tion-finding problem		

Consider the following example:

$$(\mathbf{D}) \begin{cases} \underset{u \in \mathbb{R}^2}{\text{maximize}} & 3u_1 + 3u_2 \\ \text{subject to} & 2u_1 + 4u_2 \le 2 \\ & u_1 - u_2 \le 2 \\ & -4u_1 + u_2 \le 1 \end{cases}$$

We are at the point $\mathbf{u} = (1,0)$ and want to pick a direction \mathbf{v} to go.

What is the best direction, and how do we find it?

Introduction	The direction-finding problem	The augmenting step	The restricted primal
0	●00	00	
The direc	tion-finding problem		

Consider the following example:

$$(\mathbf{D}) \begin{cases} \underset{u \in \mathbb{R}^2}{\text{maximize}} & 3u_1 + 3u_2 \\ \text{subject to} & 2u_1 + 4u_2 \le 2 \\ & u_1 - u_2 \le 2 \\ & -4u_1 + u_2 \le 1 \end{cases}$$

We are at the point $\mathbf{u} = (1, 0)$ and want to pick a direction \mathbf{v} to go. What is the best direction, and how do we find it?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆

• **Answer 1.** (From calculus.) Gradient descent: take **v** proportional to **b** = (3, 3), the cost vector.

Introduction	The direction-finding problem	The augmenting step	The restricted primal
0	●00	00	
The direc	tion-finding problem		

Consider the following example:

$$(\mathbf{D}) \begin{cases} \underset{u \in \mathbb{R}^2}{\text{maximize}} & 3u_1 + 3u_2 \\ \text{subject to} & 2u_1 + 4u_2 \leq 2 \\ & u_1 - u_2 \leq 2 \\ & -4u_1 + u_2 \leq 1 \end{cases}$$

We are at the point $\mathbf{u} = (1, 0)$ and want to pick a direction \mathbf{v} to go. What is the best direction, and how do we find it?

- Answer 1. (From calculus.) Gradient descent: take **v** proportional to **b** = (3,3), the cost vector.
- **Answer 2**. We should also make sure we don't accidentally leave the feasible region.

Introduction	The direction-finding problem	The augmenting step	The restricted primal
O	○●○	00	
The linea	r program for v		

We can find \mathbf{v} using a linear program:

• Objective function: we want to improve $3u_1 + 3u_2$ as quickly as possible, so we maximize $3v_1 + 3v_2$.

Introduction	The direction-finding problem	The augmenting step	The restricted primal
0	○●○	00	
The linea	r program for v		

- Objective function: we want to improve $3u_1 + 3u_2$ as quickly as possible, so we maximize $3v_1 + 3v_2$.
- Boundary conditions: At $\mathbf{u} = (1,0)$, the constraint $2u_1 + 4u_2 \le 2$ is tight, so we make sure we don't violate it and ask that

$$2v_1+4v_2\leq 0.$$

Introduction	The direction-finding problem	The augmenting step	The restricted primal
0	○●○	00	
The linea	r program for v		

- Objective function: we want to improve $3u_1 + 3u_2$ as quickly as possible, so we maximize $3v_1 + 3v_2$.
- Boundary conditions: At $\mathbf{u} = (1,0)$, the constraint $2u_1 + 4u_2 \le 2$ is tight, so we make sure we don't violate it and ask that

$$2v_1+4v_2\leq 0.$$

The constraints $u_1 - u_2 \le 2$ and $-4u_1 + u_2 \le 1$ are slack, so we ignore them.

Introduction	The direction-finding problem	The augmenting step	The restricted primal
0	○●○	00	
The linea	r program for v		

- Objective function: we want to improve $3u_1 + 3u_2$ as quickly as possible, so we maximize $3v_1 + 3v_2$.
- Boundary conditions: At u = (1,0), the constraint 2u₁ + 4u₂ ≤ 2 is tight, so we make sure we don't violate it and ask that

$$2v_1+4v_2\leq 0.$$

The constraints $u_1 - u_2 \le 2$ and $-4u_1 + u_2 \le 1$ are slack, so we ignore them.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

 Scaling constraints: we just want a direction, not a magnitude. So we limit v by asking that v₁, v₂ ≤ 1.

Introduction	The direction-finding problem	The augmenting step	The restricted primal
0	○●○	00	
The linea	r program for v		

- Objective function: we want to improve $3u_1 + 3u_2$ as quickly as possible, so we maximize $3v_1 + 3v_2$.
- Boundary conditions: At $\mathbf{u} = (1,0)$, the constraint $2u_1 + 4u_2 \le 2$ is tight, so we make sure we don't violate it and ask that

$$2v_1+4v_2\leq 0.$$

The constraints $u_1 - u_2 \le 2$ and $-4u_1 + u_2 \le 1$ are slack, so we ignore them.

 Scaling constraints: we just want a direction, not a magnitude. So we limit v by asking that v₁, v₂ ≤ 1.

(Fine print: this only works if the coefficients in the objective function $\mathbf{u}^{\mathsf{T}}\mathbf{b}$ are nonnegative, but we can make sure that this holds.)

The original LP, (D), leads to the auxiliary LP, (DRP):

$$(\mathbf{D}) \begin{cases} \underset{\mathbf{u} \in \mathbb{R}^{m}}{\text{subject to}} & \mathbf{u}^{\mathsf{T}} \mathbf{b} \\ \text{subject to} & \mathbf{u}^{\mathsf{T}} A \leq \mathbf{c}^{\mathsf{T}} \\ & \mathbf{u} \text{ unrestricted} \end{cases} (\mathbf{DRP}) \begin{cases} \underset{\mathbf{v} \in \mathbb{R}^{m}}{\text{subject to}} & \mathbf{v}^{\mathsf{T}} \mathbf{b} \\ \text{subject to} & \mathbf{v}^{\mathsf{T}} A_{J} \leq \mathbf{0}^{\mathsf{T}} \\ & v_{1}, \dots, v_{m} \leq 1 \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

(Here, J indexes constraints which are tight at the initial point \mathbf{u} .)

The original LP, (D), leads to the auxiliary LP, (DRP):

$$(\mathbf{D}) \begin{cases} \underset{\mathbf{u} \in \mathbb{R}^{m}}{\text{subject to}} & \mathbf{u}^{\mathsf{T}} \mathbf{b} \\ \underset{\mathbf{u} \text{ unrestricted}}{\text{subject to}} & \mathbf{u}^{\mathsf{T}} A \leq \mathbf{c}^{\mathsf{T}} & (\mathbf{DRP}) \end{cases} \begin{cases} \underset{\mathbf{v} \in \mathbb{R}^{m}}{\text{subject to}} & \mathbf{v}^{\mathsf{T}} \mathbf{b} \\ \underset{\mathbf{v} \in \mathbb{R}^{m}}{\text{subject to}} & \mathbf{v}^{\mathsf{T}} A_{J} \leq \mathbf{0}^{\mathsf{T}} \\ \\ & v_{1}, \dots, v_{m} \leq 1 \end{cases}$$

(Here, J indexes constraints which are tight at the initial point \mathbf{u} .) In our example, we get:

$$(\mathsf{DRP}) \begin{cases} \underset{\mathsf{v} \in \mathbb{R}^2}{\text{maximize}} & 3v_1 + 3v_2 \\ \text{subject to} & 2v_1 + 4v_2 \leq 0 \\ & v_1 & \leq 1 \\ & v_2 \leq 1 \end{cases}$$

▲□ → ▲圖 → ▲ 臣 → ▲ 臣 → ○ ● ● ● ● ●

Introduction 0	The direction-finding problem	The augmenting step ●0	The restricted primal
The augr	nenting step		

Introduction O	The direction-finding problem	The augmenting step ●○	The restricted primal
The augn	nenting step		

We can now do the primal-dual algorithm, just very badly.

• Start at some solution to (D). $(u_1, u_2) = (1, 0)$

Introduction O	The direction-finding problem	The augmenting step ●0	The restricted primal
The augn	nenting step		

- Start at some solution to (D). $(u_1, u_2) = (1, 0)$
- **2** Write the direction-finding problem (**DRP**). (previous slide)

・ロト・日本・ヨト・ヨト・日・ つへぐ

Introduction 0	The direction-finding problem	The augmenting step ●0	The restricted primal
The augn	nenting step		

- Start at some solution to (D). $(u_1, u_2) = (1, 0)$
- **2** Write the direction-finding problem (**DRP**). (previous slide)
- Solve (**DRP**) to find a direction **v**. We get $(v_1, v_2) = (1, -\frac{1}{2})$

・ロト・日本・ヨト・ヨト・日・ つへぐ

Introduction O	The direction-finding problem	The augmenting step ●○	The restricted primal
The augn	nenting step		

- Start at some solution to (D). $(u_1, u_2) = (1, 0)$
- **2** Write the direction-finding problem (**DRP**). (previous slide)
- Solve (**DRP**) to find a direction **v**. We get $(v_1, v_2) = (1, -\frac{1}{2})$

・ロト・日本・ヨト・ヨト・日・ つへぐ

Q Find the largest t such that $\mathbf{u} + t\mathbf{v}$ is still feasible for (**D**).

Introduction O	The direction-finding problem	The augmenting step ●○	The restricted primal
The augr	nenting step		

- Start at some solution to (D). $(u_1, u_2) = (1, 0)$
- **2** Write the direction-finding problem (**DRP**). (previous slide)
- Solve (**DRP**) to find a direction **v**. We get $(v_1, v_2) = (1, -\frac{1}{2})$
- **9** Find the largest t such that $\mathbf{u} + t\mathbf{v}$ is still feasible for (**D**).

 $\left\{\begin{array}{c} 2(u_1+tv_1)+4(u_2+tv_2)\leq 2 \text{ holds automatically} \end{array}\right.$

Introduction O	The direction-finding problem	The augmenting step ●○	The restricted primal
The augr	nenting step		

- Start at some solution to (D). $(u_1, u_2) = (1, 0)$
- **2** Write the direction-finding problem (**DRP**). (previous slide)
- Solve (**DRP**) to find a direction **v**. We get $(v_1, v_2) = (1, -\frac{1}{2})$
- **9** Find the largest t such that $\mathbf{u} + t\mathbf{v}$ is still feasible for (**D**).

 $\begin{cases} 2(u_1 + tv_1) + 4(u_2 + tv_2) \le 2 \text{ holds automatically} \\ (u_1 + tv_1) - (u_2 + tv_2) \le 2 \implies t \le \frac{2}{3} \end{cases}$

・ロト・(型ト・ミト・ミト・ ヨー うへぐ

Introduction 0	The direction-finding problem	The augmenting step ●0	The restricted primal
The augr	nenting step		

- Start at some solution to (D). $(u_1, u_2) = (1, 0)$
- **2** Write the direction-finding problem (**DRP**). (previous slide)
- Solve (**DRP**) to find a direction **v**. We get $(v_1, v_2) = (1, -\frac{1}{2})$
- **Q** Find the largest t such that $\mathbf{u} + t\mathbf{v}$ is still feasible for (**D**).

 $\begin{cases} 2(u_1 + tv_1) + 4(u_2 + tv_2) \le 2 \text{ holds automatically} \\ (u_1 + tv_1) - (u_2 + tv_2) \le 2 \implies t \le \frac{2}{3} \\ -4(u_1 + tv_1) + (u_2 + tv_2) \le 1 \implies t \ge -\frac{9}{10} \end{cases}$

(日)、(型)、(E)、(E)、(E)、(D)、(C)

Introduction O	The direction-finding problem	The augmenting step ●0	The restricted primal
The augr	nenting step		

- Start at some solution to (D). $(u_1, u_2) = (1, 0)$
- **2** Write the direction-finding problem (**DRP**). (previous slide)
- Solve (**DRP**) to find a direction **v**. We get $(v_1, v_2) = (1, -\frac{1}{2})$
- **Q** Find the largest t such that $\mathbf{u} + t\mathbf{v}$ is still feasible for (**D**).

 $\begin{cases} 2(u_1 + tv_1) + 4(u_2 + tv_2) \le 2 \text{ holds automatically} \\ (u_1 + tv_1) - (u_2 + tv_2) \le 2 \implies t \le \frac{2}{3} \\ -4(u_1 + tv_1) + (u_2 + tv_2) \le 1 \implies t \ge -\frac{9}{10} \end{cases}$

(日)、(型)、(E)、(E)、(E)、(D)、(C)

Largest value of t allowed is $t = \frac{2}{3}$.

Introduction 0	The direction-finding problem	The augmenting step ●0	The restricted primal
The augn	nenting step		

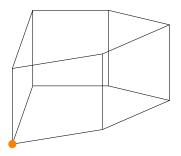
- Start at some solution to (D). $(u_1, u_2) = (1, 0)$
- **2** Write the direction-finding problem (**DRP**). (previous slide)
- Solve (**DRP**) to find a direction **v**. We get $(v_1, v_2) = (1, -\frac{1}{2})$
- Find the largest t such that $\mathbf{u} + t\mathbf{v}$ is still feasible for (**D**).

 $\begin{cases} 2(u_1 + tv_1) + 4(u_2 + tv_2) \le 2 \text{ holds automatically} \\ (u_1 + tv_1) - (u_2 + tv_2) \le 2 \implies t \le \frac{2}{3} \\ -4(u_1 + tv_1) + (u_2 + tv_2) \le 1 \implies t \ge -\frac{9}{10} \end{cases}$

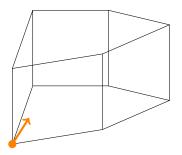
Largest value of t allowed is $t = \frac{2}{3}$.

3 Replace **u** by $\mathbf{u} + t\mathbf{v}$ and go back to step 2. $\mathbf{u} + \frac{2}{3}\mathbf{v} = (\frac{5}{3}, -\frac{1}{3})$.

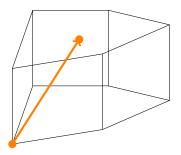
Introduction 0	The direction-finding problem	The augmenting step ○●	The restricted primal
A made-ı	ıp example		



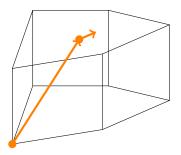
Introduction 0	The direction-finding problem	The augmenting step ○●	The restricted primal
A made-ı	ıp example		



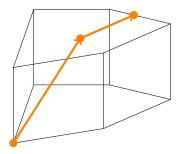
Introduction 0	The direction-finding problem	The augmenting step ○●	The restricted primal
A made-ı	ıp example		



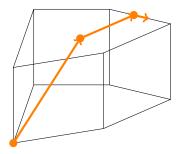
Introduction O	The direction-finding problem	The augmenting step ○●	The restricted primal
A made-u	ıp example		



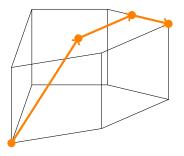
Introduction 0	The direction-finding problem	The augmenting step ○●	The restricted primal
A made-u	up example		



Introduction 0	The direction-finding problem	The augmenting step ⊙●	The restricted primal
A made-i	up example		

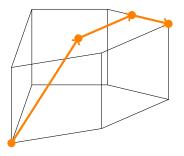


Introduction O	The direction-finding problem	The augmenting step ○●	The restricted primal
A made-u	p example		



We stop when we reach a point where t = 0 and we cannot make any further improvement.

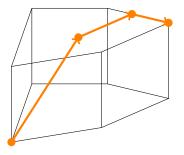
Introduction O	The direction-finding problem	The augmenting step ○●	The restricted primal
A made-u	p example		



We stop when we reach a point where t = 0 and we cannot make any further improvement.

In theory, the advantage is that we do many fewer iterations.

Introduction O	The direction-finding problem	The augmenting step ○●	The restricted primal
A made-u	p example		



We stop when we reach a point where t = 0 and we cannot make any further improvement.

In theory, the advantage is that we do many fewer iterations.

Right now, the disadvantage is that each iteration requires solving its own LP. This is way too slow!

Introduction	The direction-finding problem	The augmenting step	The restricted primal
O		00	●00
The restr	ricted primal		

Introduction	The direction-finding problem	The augmenting step	The restricted primal
O		00	●00
The restr	ricted primal		

$$(\mathbf{P}) \begin{cases} \underset{\mathbf{x} \in \mathbb{R}^{n}}{\text{subject to } A\mathbf{x} = \mathbf{b}} \\ \mathbf{x} \ge \mathbf{0} \end{cases}$$

I

Introduction	The direction-finding problem	The augmenting step	The restricted primal
0		00	●00
The restr	icted primal		

$$\begin{array}{ll} (\mathbf{P}) \begin{cases} \underset{\mathbf{x} \in \mathbb{R}^{n}}{\text{subject to}} & \mathbf{c}^{\mathsf{T}} \mathbf{x} \\ \\ \underset{\mathbf{x} \geq \mathbf{0}}{\text{subject to}} & A \mathbf{x} = \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0} \end{cases} \\ \\ (\mathbf{D}) \begin{cases} \underset{\mathbf{u} \in \mathbb{R}^{m}}{\text{maximize}} & \mathbf{u}^{\mathsf{T}} \mathbf{b} \\ \\ \\ \underset{\mathbf{subject to}}{\text{subject to}} & \mathbf{u}^{\mathsf{T}} A \leq \mathbf{c}^{\mathsf{T}} \end{cases} \end{cases}$$

Introduction	The direction-finding problem	The augmenting step	The restricted primal
0		00	●00
The restr	icted primal		

$$(\mathbf{P}) \begin{cases} \underset{\mathbf{x} \in \mathbb{R}^{n}}{\text{subject to }} & \mathbf{c}^{\mathsf{T}} \mathbf{x} \\ \text{subject to } & A \mathbf{x} = \mathbf{b} \\ & \mathbf{x} \ge \mathbf{0} \end{cases}$$
$$(\mathbf{D}) \begin{cases} \underset{\mathbf{u} \in \mathbb{R}^{m}}{\text{subject to }} & \mathbf{u}^{\mathsf{T}} \mathbf{b} \\ \underset{\mathbf{v} \in \mathbb{R}^{m}}{\text{subject to }} & \mathbf{u}^{\mathsf{T}} A \le \mathbf{c}^{\mathsf{T}} \end{cases} \quad (\mathbf{DRP}) \begin{cases} \underset{\mathbf{v} \in \mathbb{R}^{m}}{\text{subject to }} & \mathbf{v}^{\mathsf{T}} \mathbf{b} \\ \underset{\mathbf{v} \in \mathbb{R}^{m}}{\text{subject to }} & \mathbf{v}^{\mathsf{T}} A_{J} \le \mathbf{0}^{\mathsf{T}} \\ & v_{1}, \dots, v_{m} \le 1 \end{cases}$$

Introduction	The direction-finding problem	The augmenting step	The restricted primal
O		00	●00
The restr	ricted primal		

1

$$(\mathbf{P}) \begin{cases} \underset{\mathbf{x} \in \mathbb{R}^{n}}{\text{subject to }} \mathbf{A}\mathbf{x} = \mathbf{b} \\ \mathbf{x} \ge \mathbf{0} \end{cases} (\mathbf{RP}) \begin{cases} \underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{R}^{m}}{\text{subject to }} y_{1} + \dots + y_{m} \\ \underset{\mathbf{subject to }}{\text{subject to }} A_{J}\mathbf{x}_{J} + I\mathbf{y} = \mathbf{b} \\ \mathbf{x}, \mathbf{y} \ge \mathbf{0} \end{cases} \\ (\mathbf{D}) \begin{cases} \underset{\mathbf{u} \in \mathbb{R}^{m}}{\text{subject to }} \mathbf{u}^{\mathsf{T}}\mathbf{b} \\ \underset{\mathbf{subject to }}{\text{subject to }} \mathbf{u}^{\mathsf{T}}A \le \mathbf{c}^{\mathsf{T}} \end{cases} (\mathbf{DRP}) \begin{cases} \underset{\mathbf{v} \in \mathbb{R}^{m}}{\text{subject to }} \mathbf{v}^{\mathsf{T}}A_{J} \le \mathbf{0}^{\mathsf{T}} \\ \underset{\mathbf{v}_{1}, \dots, v_{m} \le 1}{\text{subject to }} \end{cases}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …のへで

It can also be obtained directly from (**P**):

• First, delete all primal variables *x_j* for which the *j*th dual constraint is slack.

It can also be obtained directly from (**P**):

- First, delete all primal variables x_j for which the jth dual constraint is slack.
- Then, add a new variable y_i to the i^{th} constraint, for every *i*.

It can also be obtained directly from (**P**):

- First, delete all primal variables x_j for which the jth dual constraint is slack.
- Then, add a new variable y_i to the i^{th} constraint, for every *i*.

• Replace the objective function, instead minimizing $y_1 + \cdots + y_m$.

It can also be obtained directly from (**P**):

- First, delete all primal variables x_j for which the jth dual constraint is slack.
- Then, add a new variable y_i to the i^{th} constraint, for every *i*.
- Replace the objective function, instead minimizing $y_1 + \cdots + y_m$.

Independent motivation: (**RP**) has an objective value of 0 if and only if $A_J \mathbf{x}_J = \mathbf{b}, \mathbf{x} \ge \mathbf{0}$ has a solution, which is the complementary slackness condition to see if **u** is optimal.

Introduction 0	The direction-finding problem	The augmenting step	The restricted primal 00●
Goal of t	he restricted primal		

We will improve the primal-dual algorithm by solving (\mathbf{RP}) instead of (\mathbf{DRP}) .

(We'll still be able to find the direction ${\bf v}$ from the optimal tableau for $({\bf RP}).)$

・ロト・日本・ヨト・ヨト・日・ つへぐ

Introduction	The direction-finding problem	The augmenting step	The restricted primal
0		00	00●
Goal of th	ne restricted primal		

We will improve the primal-dual algorithm by solving (\mathbf{RP}) instead of (\mathbf{DRP}) .

(We'll still be able to find the direction ${\bf v}$ from the optimal tableau for $({\bf RP}).)$

Here's why this will help:

 Solving (DRP) requires starting from scratch every time: whatever the optimal direction v was at the previous iteration, it's definitely not valid any more.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

We will improve the primal-dual algorithm by solving (\mathbf{RP}) instead of (\mathbf{DRP}) .

(We'll still be able to find the direction ${\bf v}$ from the optimal tableau for $({\bf RP}).)$

Here's why this will help:

- Solving (DRP) requires starting from scratch every time: whatever the optimal direction v was at the previous iteration, it's definitely not valid any more.
- However, (RP) keeps its constraints the same, possibly adding or removing variables, and it turns out that the optimal solution to (RP) will be a valid starting point for the next iteration of (RP).