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The four linear programs

The four linear programs in the primal-dual method:

(P)


minimize

x∈Rn
cTx

subject to Ax = b

x ≥ 0

(RP)


minimize
x∈Rn,y∈Rm

y1 + · · · + ym

subject to AJxJ + Iy = b

x, y ≥ 0

(D)

{
maximize

u∈Rm
uTb

subject to uTA ≤ cT
(DRP)


maximize

v∈Rm
vTb

subject to vTAJ ≤ 0T

v1, . . . , vm ≤ 1
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Lecture plan

Today, we modify the primal-dual method by solving (RP) instead
of (DRP).

Here’s what we have to figure out:

1 When we have the optimal solution to (RP), how do we find
the optimal solution v to (DRP) (the augmenting direction)?

2 What is the benefit from considering (RP) instead of (DRP)?
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Residual costs and dual solutions

Recall the formula:

ri = ci − cT
BA
−1
B Ai = ci − uTAi .

(The i th reduced cost is the slack in the i th dual constraint.)

In the (RP)–(DRP) primal-dual pair:

(RP)


minimize
x∈Rn,y∈Rm

y1 + · · · + ym

subject to AJxJ + Iy = b

x, y ≥ 0

(DRP)


maximize

v∈Rm
vTb

subject to vTAJ ≤ 0T

v1, . . . , vm ≤ 1

Reduced cost of yi is the slack in “vi ≤ 1” which is 1 − vi .
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The old version and the new version

Previously, an iteration looked like:

1 Given a feasible solution u to (D), check tightness of
constraints to write down (DRP).

2 Solve (DRP) (in some way) and find an optimal direction v.

3 Augment along v to get a better solution u + tv to (D);
repeat.

Now:

1 Given a feasible solution u to (D), check tightness of
constraints to write down (RP).

2 Solve (RP) with the simplex method and use reduced costs of
y to find v.

3 Augment along v just as before.
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Example from previous lecture

For the solution u = (1, 0) to (D), we write down (DRP), (RP) as
follows:

(P)


min 2x1 + 2x2 + x3

s. t. 2x1 + x2 − 4x3 = 3

4x1 − x2 + x3 = 3

x1, x2, x3 ≥ 0

(RP)


min y1 + y2

s. t. 2x1 + y1 = 3

4x1 + y2 = 3

x1, y1, y2 ≥ 0

(D)


max 3u1 + 3u2

s. t. 2u1 + 4u2 ≤ 2

u1 − u2 ≤ 2

−4u1 + u2 ≤ 1

(DRP)


max 3v1 + 3v2

s. t. 2v1 + 4v2 ≤ 0

v1, v2 ≤ 1



Lecture plan Going from (RP) to (DRP) Benefits of using (RP)

Example from previous lecture

For the solution u = (1, 0) to (D), we write down (DRP), (RP) as
follows:

(P)


min 2x1 + 2x2 + x3

s. t. 2x1 + x2 − 4x3 = 3

4x1 − x2 + x3 = 3

x1, x2, x3 ≥ 0

(RP)


min y1 + y2

s. t. 2x1 + y1 = 3

4x1 + y2 = 3

x1, y1, y2 ≥ 0

(D)


max 3u1 + 3u2

s. t. 2u1 + 4u2 ≤ 2

u1 − u2 ≤ 2

−4u1 + u2 ≤ 1

(DRP)


max 3v1 + 3v2

s. t. 2v1 + 4v2 ≤ 0

v1, v2 ≤ 1



Lecture plan Going from (RP) to (DRP) Benefits of using (RP)

Example from previous lecture

For the solution u = (1, 0) to (D), we write down (DRP), (RP) as
follows:

(P)


min 2x1 + 2x2 + x3

s. t. 2x1 + x2 − 4x3 = 3

4x1 − x2 + x3 = 3

x1, x2, x3 ≥ 0

(RP)


min y1 + y2

s. t. 2x1 + y1 = 3

4x1 + y2 = 3

x1, y1, y2 ≥ 0

(D)


max 3u1 + 3u2

s. t. 2u1 + 4u2 ≤ 2

u1 − u2 ≤ 2

−4u1 + u2 ≤ 1

(DRP)


max 3v1 + 3v2

s. t. 2v1 + 4v2 ≤ 0

v1, v2 ≤ 1



Lecture plan Going from (RP) to (DRP) Benefits of using (RP)

Solving (RP) in this example

Put (RP) into the tableau:

(And row-reduce the −zrp row.)

x1 y1 y2

y1 2 1 0 3
y2 4 0 1 3

−zrp 0 1 1 0

−zrp −6 0 0 −6

Pivot on x1, replacing y2, to optimize:

x1 y1 y2

y1 0 1 −1/2 3/2

x1 1 0 1/4 3/4

−zrp 0 0 3/2 −3/2

Optimal direction: v = (1, 1) − (0, 3
2 ) = (1,−1

2 ).
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Key observation about the primal-dual method

Lemma

If we solve (RP) to optimality in one iteration, the same basic
solution will be feasible for the next iteration.

What changes in (RP) between the iterations? Only the variables
present, not the constraints.

To prove the lemma, we need to show: if an optimal solution to
(RP) has xi > 0, then xi won’t disappear from (RP) in the next
iteration.

To use the lemma for good: use the previous optimal tableau to
start solving (RP) in the next iteration.
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Proof of lemma

In our example:

1 u = (1, 0) has one tight constraint 2u1 + 4u2 ≤ 2.

2 This corresponds to the variable x1 in (RP). Our final
solution to (RP) has x1 = 3

4 > 0.

Can x1 leave (RP) in the next iteration?

3 Because x1 > 0 in the optimal solution to (RP), we know that
2v1 + 4v2 ≤ 0 is tight in (DRP). (Complementary slackness!)

4 Since 2u1 + 4u2 = 2 and 2v1 + 4v2 = 0, we know that

2(u1 + tv1) + 4(u2 + tv2) = (2u1 + 4u2) + t(2v1 + 4v2) = 2.

5 This constraint remains tight, so x1 remains in (RP).
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Frozen variables

Frozen variables are how we exploit this fact.

We now write (RP) using all the variables of (P), but variables
that “don’t belong” are “frozen” and can’t be pivoted on.

The initial tableau of (RP), written the old way:

x1 y1 y2

y1 2 1 0 3
y2 4 0 1 3

−zrp −6 0 0 −6

Written the new way:

x1 x2 x3 y1 y2

y1 2 1 −4 1 0 3
y2 4 −1 1 0 1 3

−zrp −6 0 3 0 0 −6
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From one iteration of (RP) to the next

Suppose we solve this tableau to optimality:

x1 x2 x3 y1 y2

y1 0 3/2 −9/2 1 −1/2 3/2

x1 1 −1/4 1/4 0 1/4 3/4

−zrp 0 −3/2 9/2 0 3/2 −3/2

As before:

We find v = (1, 1) − (0, 3
2 ) = (1,−1

2 ).

We augment u to u + tv for the largest t that keeps this
feasible.

In this case, the constraint u1 − u2 ≤ 2 means we stop at
t = 2

3 , getting u + 2
3v = ( 5

3 ,−
1
3 ) as our next point.
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From one iteration of (RP) to the next

At u = ( 5
3 ,−

1
3 ), 2u1 + 4u2 ≤ 2 is still tight, but so is u1 − u2 ≤ 2.

So we keep x1 unfrozen, but also unfreeze x2:

x1 x2 x3 y1 y2

y1 0 3/2 −9/2 1 −1/2 3/2

x1 1 −1/4 1/4 0 1/4 3/4

−zrp 0 −3/2 9/2 0 3/2 −3/2

For the next iteration of (RP), we solve this tableau to optimality.
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Ending the primal-dual algorithm

Our final tableau in the second iteration of (RP):

x1 x2 x3 y1 y2

x2 0 1 −3 2/3 −1/3 1
x1 1 0 −1/2 1/6 1/6 1

−zrp 0 0 0 1 1 0

This indicates that we’ve reached an optimal solution!

The reduced costs of y1, y2 are both 1. So v = (0, 0), and we
won’t augment any further: our u = ( 5

3 ,−
1
3 ) is optimal.

In this tableau, we’ve found a solution x to (P) which has
xj = 0 whenever the j th constraint of (D) is slack. (Here, the
third constraint −4u1 + u2 ≤ 1 is slack, and x3 = 0.) By
complementary slackness, x = (1, 1, 0) is optimal for (P).
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