Primal-Dual Algorithm II Math 482, Lecture 30

Misha Lavrov

April 20, 2020

The four linear programs

The four linear programs in the primal-dual method:

$$(\mathbf{P}) \begin{cases} \underset{\mathbf{x} \in \mathbb{R}^{n}}{\text{subject to }} \mathbf{A}_{\mathbf{x}} = \mathbf{b} \\ \mathbf{x} \ge \mathbf{0} \end{cases} (\mathbf{RP}) \begin{cases} \underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{R}^{m}}{\text{subject to }} y_{1} + \dots + y_{m} \\ \underset{\mathbf{subject to }}{\text{subject to }} A_{J}\mathbf{x}_{J} + I\mathbf{y} = \mathbf{b} \\ \mathbf{x}, \mathbf{y} \ge \mathbf{0} \end{cases} \\ (\mathbf{D}) \begin{cases} \underset{\mathbf{u} \in \mathbb{R}^{m}}{\text{subject to }} \mathbf{u}^{\mathsf{T}}\mathbf{b} \\ \underset{\mathbf{subject to }}{\text{subject to }} \mathbf{u}^{\mathsf{T}}A \le \mathbf{c}^{\mathsf{T}} \end{cases} (\mathbf{DRP}) \begin{cases} \underset{\mathbf{v} \in \mathbb{R}^{m}}{\text{subject to }} \mathbf{v}^{\mathsf{T}}\mathbf{b} \\ \underset{\mathbf{v} \in \mathbb{R}^{m}}{\text{subject to }} \mathbf{v}^{\mathsf{T}}A_{J} \le \mathbf{0}^{\mathsf{T}} \\ (\mathbf{v}_{1}, \dots, v_{m} \le 1) \end{cases} \end{cases}$$

Today, we modify the primal-dual method by solving (\mathbf{RP}) instead of (\mathbf{DRP}) .

Here's what we have to figure out:

Lecture plan

Today, we modify the primal-dual method by solving (\mathbf{RP}) instead of (\mathbf{DRP}) .

Here's what we have to figure out:

When we have the optimal solution to (RP), how do we find the optimal solution v to (DRP) (the augmenting direction)?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Lecture plan

Today, we modify the primal-dual method by solving (\mathbf{RP}) instead of (\mathbf{DRP}) .

Here's what we have to figure out:

- When we have the optimal solution to (RP), how do we find the optimal solution v to (DRP) (the augmenting direction)?
- **②** What is the benefit from considering (RP) instead of (DRP)?

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Residual costs and dual solutions

Recall the formula:

$$r_i = c_i - \mathbf{c}_{\mathcal{B}}^{\mathsf{T}} A_{\mathcal{B}}^{-1} A_i = c_i - \mathbf{u}^{\mathsf{T}} A_i.$$

Residual costs and dual solutions

Recall the formula:

$$r_i = c_i - \mathbf{c}_{\mathcal{B}}^{\mathsf{T}} A_{\mathcal{B}}^{-1} A_i = c_i - \mathbf{u}^{\mathsf{T}} A_i.$$

(The i^{th} reduced cost is the slack in the i^{th} dual constraint.)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Residual costs and dual solutions

Recall the formula:

$$r_i = c_i - \mathbf{c}_{\mathcal{B}}^{\mathsf{T}} A_{\mathcal{B}}^{-1} A_i = c_i - \mathbf{u}^{\mathsf{T}} A_i.$$

(The i^{th} reduced cost is the slack in the i^{th} dual constraint.) In the (**RP**)–(**DRP**) primal-dual pair:

$$(\mathbf{RP}) \begin{cases} \underset{\mathbf{x}\in\mathbb{R}^{n},\mathbf{y}\in\mathbb{R}^{m}}{\text{subject to}} & y_{1}+\cdots+y_{m} \\ \text{subject to} & A_{J}\mathbf{x}_{J}+I\mathbf{y}=\mathbf{b} \\ \mathbf{x},\mathbf{y}\geq\mathbf{0} \end{cases} (\mathbf{DRP}) \begin{cases} \underset{\mathbf{v}\in\mathbb{R}^{m}}{\text{subject to}} & \mathbf{v}^{\mathsf{T}}\mathbf{b} \\ \text{subject to} & \mathbf{v}^{\mathsf{T}}A_{J}\leq\mathbf{0}^{\mathsf{T}} \\ v_{1},\ldots,v_{m}\leq\mathbf{1} \end{cases}$$

Residual costs and dual solutions

Recall the formula:

$$r_i = c_i - \mathbf{c}_{\mathcal{B}}^\mathsf{T} A_{\mathcal{B}}^{-1} A_i = c_i - \mathbf{u}^\mathsf{T} A_i.$$

(The i^{th} reduced cost is the slack in the i^{th} dual constraint.) In the (**RP**)–(**DRP**) primal-dual pair:

$$(\mathbf{RP}) \begin{cases} \underset{\mathbf{x}\in\mathbb{R}^{n},\mathbf{y}\in\mathbb{R}^{m}}{\text{subject to}} & y_{1}+\cdots+y_{m} \\ \text{subject to} & A_{J}\mathbf{x}_{J}+I\mathbf{y}=\mathbf{b} \\ \mathbf{x},\mathbf{y}\geq\mathbf{0} \end{cases} (\mathbf{DRP}) \begin{cases} \underset{\mathbf{v}\in\mathbb{R}^{m}}{\text{subject to}} & \mathbf{v}^{\mathsf{T}}\mathbf{b} \\ \text{subject to} & \mathbf{v}^{\mathsf{T}}A_{J}\leq\mathbf{0}^{\mathsf{T}} \\ v_{1},\ldots,v_{m}\leq\mathbf{1} \end{cases}$$

Reduced cost of y_i

Residual costs and dual solutions

Recall the formula:

$$r_i = c_i - \mathbf{c}_{\mathcal{B}}^{\mathsf{T}} A_{\mathcal{B}}^{-1} A_i = c_i - \mathbf{u}^{\mathsf{T}} A_i.$$

(The i^{th} reduced cost is the slack in the i^{th} dual constraint.) In the (**RP**)–(**DRP**) primal-dual pair:

$$(\mathbf{RP}) \begin{cases} \underset{\mathbf{x}\in\mathbb{R}^{n},\mathbf{y}\in\mathbb{R}^{m}}{\text{subject to}} & y_{1}+\cdots+y_{m} \\ \text{subject to} & A_{J}\mathbf{x}_{J}+I\mathbf{y}=\mathbf{b} \\ \mathbf{x},\mathbf{y}\geq\mathbf{0} \end{cases} (\mathbf{DRP}) \begin{cases} \underset{\mathbf{v}\in\mathbb{R}^{m}}{\text{subject to}} & \mathbf{v}^{\mathsf{T}}\mathbf{b} \\ \text{subject to} & \mathbf{v}^{\mathsf{T}}A_{J}\leq\mathbf{0}^{\mathsf{T}} \\ v_{1},\ldots,v_{m}\leq\mathbf{1} \end{cases}$$

Reduced cost of y_i is the slack in " $v_i \leq 1$ "

Residual costs and dual solutions

Recall the formula:

$$r_i = c_i - \mathbf{c}_{\mathcal{B}}^{\mathsf{T}} A_{\mathcal{B}}^{-1} A_i = c_i - \mathbf{u}^{\mathsf{T}} A_i.$$

(The i^{th} reduced cost is the slack in the i^{th} dual constraint.) In the (**RP**)–(**DRP**) primal-dual pair:

$$(\mathbf{RP}) \begin{cases} \underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{R}^{m}}{\text{subject to}} & y_{1} + \dots + y_{m} \\ \text{subject to} & A_{J}\mathbf{x}_{J} + I\mathbf{y} = \mathbf{b} \\ \mathbf{x}, \mathbf{y} \ge \mathbf{0} \end{cases} (\mathbf{DRP}) \begin{cases} \underset{\mathbf{v} \in \mathbb{R}^{m}}{\text{subject to}} & \mathbf{v}^{\mathsf{T}}\mathbf{b} \\ \text{subject to} & \mathbf{v}^{\mathsf{T}}A_{J} \le \mathbf{0}^{\mathsf{T}} \\ v_{1}, \dots, v_{m} \le 1 \end{cases}$$

Reduced cost of y_i is the slack in " $v_i \leq 1$ " which is $1 - v_i$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

The old version and the new version

Previously, an iteration looked like:

- Given a feasible solution u to (D), check tightness of constraints to write down (DRP).
- **②** Solve (**DRP**) (in some way) and find an optimal direction \mathbf{v} .
- Augment along v to get a better solution u + tv to (D); repeat.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

The old version and the new version

Previously, an iteration looked like:

- Given a feasible solution u to (D), check tightness of constraints to write down (DRP).
- **②** Solve (**DRP**) (in some way) and find an optimal direction \mathbf{v} .
- Augment along v to get a better solution u + tv to (D); repeat.

Now:

 Given a feasible solution u to (D), check tightness of constraints to write down (RP).

The old version and the new version

Previously, an iteration looked like:

- Given a feasible solution u to (D), check tightness of constraints to write down (DRP).
- **②** Solve (**DRP**) (in some way) and find an optimal direction \mathbf{v} .
- Augment along v to get a better solution u + tv to (D); repeat.

Now:

- Given a feasible solution u to (D), check tightness of constraints to write down (RP).
- Solve (RP) with the simplex method and use reduced costs of y to find v.

The old version and the new version

Previously, an iteration looked like:

- Given a feasible solution u to (D), check tightness of constraints to write down (DRP).
- **②** Solve (**DRP**) (in some way) and find an optimal direction \mathbf{v} .
- Augment along v to get a better solution u + tv to (D); repeat.

Now:

- Given a feasible solution u to (D), check tightness of constraints to write down (RP).
- Solve (RP) with the simplex method and use reduced costs of y to find v.
- O Augment along **v** just as before.

Benefits of using (**RP**) 000000

Example from previous lecture

$$(\mathbf{P}) \begin{cases} \min & 2x_1 + 2x_2 + x_3 \\ \text{s. t.} & 2x_1 + x_2 - 4x_3 = 3 \\ & 4x_1 - x_2 + x_3 = 3 \\ & x_1, x_2, x_3 \ge 0 \end{cases}$$
$$(\mathbf{D}) \begin{cases} \max & 3u_1 + 3u_2 \\ \text{s. t.} & 2u_1 + 4u_2 \le 2 \\ & u_1 - u_2 \le 2 \\ & -4u_1 + u_2 \le 1 \end{cases}$$

Going from (RP) to (DRP) $\circ \circ \circ \circ \circ$

Benefits of using (**RP**) 000000

Example from previous lecture

For the solution $\mathbf{u} = (1,0)$ to (D), we write down (DRP), (RP) as follows:

(P)	$\begin{cases} \min & 2x_1 + 2x_2 + x_3 \\ \text{s. t.} & 2x_1 + x_2 - 4x_3 = 3 \\ & 4x_1 - x_2 + x_3 = 3 \\ & x_1, x_2, x_3 \ge 0 \end{cases}$	
(D)	$\begin{cases} \max & 3u_1 + 3u_2 \\ \text{s. t.} & 2u_1 + 4u_2 \leq 2 \\ & u_1 - u_2 \leq 2 \\ & -4u_1 + u_2 \leq 1 \end{cases}$	$(\textbf{DRP}) \begin{cases} \max & 3v_1 + 3v_2 \\ \text{s. t.} & 2v_1 + 4v_2 \le 0 \\ & v_1, v_2 \le 1 \end{cases}$

Going from (RP) to (DRP) $\circ \circ \circ \circ \circ$

Benefits of using (**RP**) 000000

Example from previous lecture

For the solution $\mathbf{u} = (1,0)$ to (D), we write down (DRP), (RP) as follows:

(P)	$\begin{cases} \min & 2x_1 + 2x_2 + x_3 \\ \text{s. t.} & 2x_1 + x_2 - 4x_3 = 3 \\ & 4x_1 - x_2 + x_3 = 3 \end{cases}$	(RP) <	$ \begin{array}{ll} \min & y_1 + y_2 \\ \text{s. t.} & 2x_1 + y_1 = 3 \\ & 4x_1 + y_2 = 3 \end{array} $
	$\left(x_1, x_2, x_3 \ge 0 \right)$		$x_1, y_1, y_2 \ge 0$
(D)	$\begin{cases} \max & 3u_1 + 3u_2 \\ \text{s. t.} & 2u_1 + 4u_2 \leq 2 \\ & u_1 - u_2 \leq 2 \\ & -4u_1 + u_2 \leq 1 \end{cases}$	(DRP)	$\begin{cases} \max & 3v_1 + 3v_2 \\ \text{s. t.} & 2v_1 + 4v_2 \leq 0 \\ & v_1, v_2 \leq 1 \end{cases}$

Going from (RP) to (DRP) 0000

Benefits of using (**RP**) 000000

Solving (**RP**) in this example

Put (**RP**) into the tableau:

	x_1	y_1	<i>y</i> ₂	
<i>y</i> 1	2	1	0	3
<i>y</i> ₂	4	0	1	3
$-z_{rp}$	0	1	1	0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Benefits of using (**RP**) 000000

Solving (**RP**) in this example

Put (**RP**) into the tableau: (And row-reduce the $-z_{rp}$ row.)

	<i>x</i> ₁	y_1	<i>y</i> ₂	
<i>y</i> 1	2	1	0	3
<i>y</i> ₂	4	0	1	3
$-z_{rp}$	0	1	1	0
$-z_{rp}$	-6	0	0	-6

Benefits of using (RP)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

Solving (**RP**) in this example

Put (**RP**) into the tableau: (And row-reduce the $-z_{rp}$ row.)

	<i>x</i> ₁	y_1	<i>y</i> 2	
<i>Y</i> 1	2	1	0	3
У2	4	0	1	3
$-z_{rp}$	0	1	1	0
$-z_{rp}$	-6	0	0	-6

Pivot on x_1 , replacing y_2 , to optimize:

	x_1	<i>y</i> ₁	<i>y</i> ₂	
y	1 0	1	-1/2	3/2
X	₁ 1	0	$^{1/4}$	3/4
$-z_i$	_{rp} 0	0	3/2	-3/2

Benefits of using (RP)

Solving (**RP**) in this example

Put (**RP**) into the tableau: (And row-reduce the $-z_{rp}$ row.)

	x_1	y_1	<i>y</i> 2		
<i>y</i> 1	2	1	0	3	
<i>y</i> ₂	4	0	1	3	
$-z_{rp}$	0	1	1	0	
$-z_{rp}$	-6	0	0	-6	

Pivot on x_1 , replacing y_2 , to optimize:

	x_1	y_1	<i>y</i> ₂	
<i>y</i> 1	0	1	-1/2	3/2
<i>x</i> ₁	1	0	1/4	3/4
-Z _{rp}	0	0	3/2	-3/2

Optimal direction: $\mathbf{v} = (1, 1) - (0, \frac{3}{2}) = (1, -\frac{1}{2}).$

Benefits of using (RP) •00000

Key observation about the primal-dual method

Lemma

If we solve (\mathbf{RP}) to optimality in one iteration, the same basic solution will be feasible for the next iteration.

Key observation about the primal-dual method

Lemma

If we solve (\mathbf{RP}) to optimality in one iteration, the same basic solution will be feasible for the next iteration.

What changes in (RP) between the iterations?

Key observation about the primal-dual method

Lemma

If we solve (\mathbf{RP}) to optimality in one iteration, the same basic solution will be feasible for the next iteration.

What changes in (\mathbf{RP}) between the iterations? Only the variables present, not the constraints.

Key observation about the primal-dual method

Lemma

If we solve (\mathbf{RP}) to optimality in one iteration, the same basic solution will be feasible for the next iteration.

What changes in (\mathbf{RP}) between the iterations? Only the variables present, not the constraints.

To prove the lemma, we need to show: if an optimal solution to (\mathbf{RP}) has $x_i > 0$, then x_i won't disappear from (\mathbf{RP}) in the next iteration.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Key observation about the primal-dual method

Lemma

If we solve (RP) to optimality in one iteration, the same basic solution will be feasible for the next iteration.

What changes in (\mathbf{RP}) between the iterations? Only the variables present, not the constraints.

To prove the lemma, we need to show: if an optimal solution to (\mathbf{RP}) has $x_i > 0$, then x_i won't disappear from (\mathbf{RP}) in the next iteration.

To use the lemma for good: use the previous optimal tableau to start solving (\mathbf{RP}) in the next iteration.

Proof of lemma

In our example:

Q $\mathbf{u} = (1,0)$ has one tight constraint $2u_1 + 4u_2 \le 2$.

Proof of lemma

In our example:

- **Q** $\mathbf{u} = (1,0)$ has one tight constraint $2u_1 + 4u_2 \le 2$.
- **②** This corresponds to the variable x_1 in (**RP**). Our final solution to (**RP**) has $x_1 = \frac{3}{4} > 0$.

Proof of lemma

In our example:

- **Q** $\mathbf{u} = (1,0)$ has one tight constraint $2u_1 + 4u_2 \le 2$.
- **②** This corresponds to the variable x_1 in (**RP**). Our final solution to (**RP**) has $x_1 = \frac{3}{4} > 0$.

Can x_1 leave (RP) in the next iteration?

Proof of lemma

In our example:

- **Q** $\mathbf{u} = (1,0)$ has one tight constraint $2u_1 + 4u_2 \le 2$.
- Our final solution to (RP) has x₁ = ³/₄ > 0.

Can x_1 leave (RP) in the next iteration?

Secause $x_1 > 0$ in the optimal solution to (**RP**), we know that $2v_1 + 4v_2 \le 0$ is tight in (**DRP**). (Complementary slackness!)

Proof of lemma

In our example:

- **Q** $\mathbf{u} = (1,0)$ has one tight constraint $2u_1 + 4u_2 \le 2$.
- **②** This corresponds to the variable x_1 in (**RP**). Our final solution to (**RP**) has $x_1 = \frac{3}{4} > 0$.

Can x_1 leave (RP) in the next iteration?

- Secause $x_1 > 0$ in the optimal solution to (**RP**), we know that $2v_1 + 4v_2 \le 0$ is tight in (**DRP**). (Complementary slackness!)
- Since $2u_1 + 4u_2 = 2$ and $2v_1 + 4v_2 = 0$, we know that

$$2(u_1 + tv_1) + 4(u_2 + tv_2) = (2u_1 + 4u_2) + t(2v_1 + 4v_2) = 2.$$

Proof of lemma

In our example:

- **Q** $\mathbf{u} = (1,0)$ has one tight constraint $2u_1 + 4u_2 \le 2$.
- **②** This corresponds to the variable x_1 in (**RP**). Our final solution to (**RP**) has $x_1 = \frac{3}{4} > 0$.

Can x_1 leave (RP) in the next iteration?

- Solution Because $x_1 > 0$ in the optimal solution to (**RP**), we know that $2v_1 + 4v_2 \le 0$ is tight in (**DRP**). (Complementary slackness!)
- Since $2u_1 + 4u_2 = 2$ and $2v_1 + 4v_2 = 0$, we know that

$$2(u_1 + tv_1) + 4(u_2 + tv_2) = (2u_1 + 4u_2) + t(2v_1 + 4v_2) = 2.$$

O This constraint remains tight, so x_1 remains in (**RP**).

Frozen variables

Frozen variables are how we exploit this fact.

We now write (\mathbf{RP}) using *all* the variables of (\mathbf{P}) , but variables that "don't belong" are "frozen" and can't be pivoted on.

Frozen variables

Frozen variables are how we exploit this fact.

We now write (\mathbf{RP}) using *all* the variables of (\mathbf{P}) , but variables that "don't belong" are "frozen" and can't be pivoted on.

The initial tableau of (**RP**), written the old way:

	x_1	y_1	<i>y</i> 2	
<i>y</i> ₁	2	1	0	3
<i>y</i> ₂	4	0	1	3
$-z_{rp}$	-6	0	0	-6

Frozen variables

Frozen variables are how we exploit this fact.

We now write (\mathbf{RP}) using *all* the variables of (\mathbf{P}) , but variables that "don't belong" are "frozen" and can't be pivoted on.

The initial tableau of (\mathbf{RP}) , written the old way:

	x_1	y_1	<i>y</i> 2	
<i>y</i> 1	2	1	0	3
<i>y</i> ₂	4	0	1	3
$-z_{rp}$	-6	0	0	-6

Written the new way:

Going from (RP) to (DRP) 0000

Benefits of using (RP) 000000

From one iteration of (**RP**) to the next

Suppose we solve this tableau to optimality:

	x_1	x 2	x 3	y_1	<i>y</i> ₂	
<i>y</i> ₁	0	3/2	- ⁹ /2	1	-1/2	3/2
x_1	1	-1/4	1/4	0	1/4	3/4
-Z _{rp}	0	-3/2	9/2	0	3/2	-3/2

Going from (RP) to (DRP) 0000

Benefits of using (RP) 000000

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

From one iteration of (\mathbf{RP}) to the next

Suppose we solve this tableau to optimality:

	x_1	x 2	x 3	y_1	<i>y</i> ₂	
<i>y</i> ₁	0	3/2	_9 /2	1	-1/2	3/2
<i>x</i> ₁	1	-1/4	1/4	0	1/4	3/4
-z _{rp}	0	-3/2	9/2	0	3/2	-3/2

As before:

• We find $\mathbf{v} = (1,1) - (0,\frac{3}{2}) = (1,-\frac{1}{2}).$

Going from (RP) to (DRP) 0000

Benefits of using (RP) 000000

From one iteration of (**RP**) to the next

Suppose we solve this tableau to optimality:

	x_1	x ₂	x 3	y_1	<i>y</i> ₂	
<i>y</i> ₁	0	3/2	_9 /2	1	-1/2	3/2
<i>x</i> ₁	1	-1/4	1/4	0	1/4	3/4
-z _{rp}	0	-3/2	9/2	0	3/2	-3/2

As before:

- We find $\mathbf{v} = (1,1) (0,\frac{3}{2}) = (1,-\frac{1}{2}).$
- We augment **u** to **u** + t**v** for the largest t that keeps this feasible.

Benefits of using (RP) 000000

From one iteration of (**RP**) to the next

Suppose we solve this tableau to optimality:

	x_1	x ₂	x 3	y_1	<i>y</i> ₂	
<i>y</i> ₁	0	3/2	_9 /2	1	-1/2	3/2
<i>x</i> ₁	1	-1/4	1/4	0	1/4	3/4
-z _{rp}	0	-3/2	9/2	0	3/2	-3/2

As before:

- We find $\mathbf{v} = (1,1) (0,\frac{3}{2}) = (1,-\frac{1}{2}).$
- We augment **u** to **u** + t**v** for the largest t that keeps this feasible.
- In this case, the constraint $u_1 u_2 \le 2$ means we stop at $t = \frac{2}{3}$, getting $\mathbf{u} + \frac{2}{3}\mathbf{v} = (\frac{5}{3}, -\frac{1}{3})$ as our next point.

Benefits of using (RP) 000000

From one iteration of (RP) to the next

At $\mathbf{u} = (\frac{5}{3}, -\frac{1}{3})$, $2u_1 + 4u_2 \le 2$ is still tight, but so is $u_1 - u_2 \le 2$.

From one iteration of (**RP**) to the next

At $\mathbf{u} = (\frac{5}{3}, -\frac{1}{3})$, $2u_1 + 4u_2 \le 2$ is still tight, but so is $u_1 - u_2 \le 2$. So we keep x_1 unfrozen, but also unfreeze x_2 :

	x_1	<i>x</i> ₂	x 3	y_1	<i>y</i> ₂	
<i>y</i> ₁	0	3/2	-9/2	1	-1/2	3/2
x_1	1	-1/4	1/4	0	$^{1/4}$	3/4
$-z_{rp}$	0	-3/2	9/2	0	3/2	-3/2

From one iteration of (**RP**) to the next

At $\mathbf{u} = (\frac{5}{3}, -\frac{1}{3})$, $2u_1 + 4u_2 \le 2$ is still tight, but so is $u_1 - u_2 \le 2$. So we keep x_1 unfrozen, but also unfreeze x_2 :

	x_1	<i>x</i> ₂	x 3	y_1	<i>y</i> ₂	
<i>y</i> ₁	0	3/2	-9 /2	1	-1/2	3/2
x_1	1	-1/4	1/4	0	1/4	3/4
$-z_{rp}$	0	-3/2	9/2	0	3/2	-3/2

For the next iteration of (\mathbf{RP}) , we solve this tableau to optimality.

Going from (RP) to (DRP) 0000

Benefits of using (**RP**) 00000●

Ending the primal-dual algorithm

Our final tableau in the second iteration of (**RP**):

	x_1	<i>x</i> ₂	x 3	<i>y</i> 1	<i>y</i> ₂	
<i>x</i> ₂	0	1	-3	2/3	-1/3	1
<i>x</i> ₁	1	0	-1/2	$^{1/6}$	1/6	1
$-z_{rp}$	0	0	0	1	1	0

Going from (RP) to (DRP) 0000

Benefits of using (**RP**) 00000●

Ending the primal-dual algorithm

Our final tableau in the second iteration of (**RP**):

	x_1	<i>x</i> ₂	x 3	y_1	<i>y</i> ₂	
<i>x</i> ₂	0	1	-3	2/3	-1/3	1
<i>x</i> ₁	1	0	-1/2	$^{1/6}$	1/6	1
$-z_{rp}$	0	0	0	1	1	0

Benefits of using (RP)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

Ending the primal-dual algorithm

Our final tableau in the second iteration of (**RP**):

	x_1	<i>x</i> ₂	x 3	<i>y</i> 1	<i>y</i> ₂	
<i>x</i> ₂	0	1	-3	2/3	-1/3	1
<i>x</i> ₁	1	0	-1/2	$^{1/6}$	1/6	1
$-z_{rp}$	0	0	0	1	1	0

This indicates that we've reached an optimal solution!

• The reduced costs of y_1, y_2 are both 1. So $\mathbf{v} = (0, 0)$, and we won't augment any further: our $\mathbf{u} = (\frac{5}{3}, -\frac{1}{3})$ is optimal.

Benefits of using (RP)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Ending the primal-dual algorithm

Our final tableau in the second iteration of (**RP**):

	x_1	<i>x</i> ₂	x 3	<i>y</i> 1	<i>y</i> ₂	
<i>x</i> ₂	0	1	-3	2/3	-1/3	1
<i>x</i> ₁	1	0	-1/2	$^{1/6}$	1/6	1
$-z_{rp}$	0	0	0	1	1	0

- The reduced costs of y₁, y₂ are both 1. So v = (0,0), and we won't augment any further: our u = (⁵/₃, -¹/₃) is optimal.
- In this tableau, we've found a solution **x** to (**P**) which has $x_j = 0$ whenever the j^{th} constraint of (**D**) is slack.

Benefits of using (RP)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Ending the primal-dual algorithm

Our final tableau in the second iteration of (**RP**):

	x_1	<i>x</i> ₂	x 3	<i>y</i> 1	<i>y</i> ₂	
<i>x</i> ₂	0	1	-3	2/3	-1/3	1
<i>x</i> ₁	1	0	-1/2	$^{1/6}$	1/6	1
$-z_{rp}$	0	0	0	1	1	0

- The reduced costs of y_1, y_2 are both 1. So $\mathbf{v} = (0, 0)$, and we won't augment any further: our $\mathbf{u} = (\frac{5}{3}, -\frac{1}{3})$ is optimal.
- In this tableau, we've found a solution \mathbf{x} to (\mathbf{P}) which has $x_j = 0$ whenever the j^{th} constraint of (\mathbf{D}) is slack. (Here, the third constraint $-4u_1 + u_2 \le 1$ is slack, and $x_3 = 0$.)

Benefits of using (RP)

Ending the primal-dual algorithm

Our final tableau in the second iteration of (**RP**):

	x_1	<i>x</i> ₂	x 3	y_1	<i>Y</i> 2	
<i>x</i> ₂	0	1	-3	2/3	-1/3	1
x_1	1	0	-1/2	$^{1/6}$	1/6	1
$-z_{rp}$	0	0	0	1	1	0

- The reduced costs of y_1, y_2 are both 1. So $\mathbf{v} = (0, 0)$, and we won't augment any further: our $\mathbf{u} = (\frac{5}{3}, -\frac{1}{3})$ is optimal.
- In this tableau, we've found a solution \mathbf{x} to (**P**) which has $x_j = 0$ whenever the j^{th} constraint of (**D**) is slack. (Here, the third constraint $-4u_1 + u_2 \le 1$ is slack, and $x_3 = 0$.) By complementary slackness, $\mathbf{x} = (1, 1, 0)$ is optimal for (**P**).