# Primal-Dual Algorithm II Math 482, Lecture 30 

Misha Lavrov

April 20, 2020

## The four linear programs

The four linear programs in the primal-dual method:
$(\mathbf{P})\left\{\begin{array}{ll}\underset{\mathbf{x} \in \mathbb{R}^{n}}{\operatorname{minimize}} & \mathbf{c}^{\top} \mathbf{x} \\ \text { subject to } & A \mathbf{x}=\mathbf{b} \\ & \mathbf{x} \geq \mathbf{0}\end{array} \quad(\mathbf{R P}) \begin{cases}\underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{R}^{m}}{\operatorname{minimize}} & y_{1}+\cdots+y_{m} \\ \text { subject to } & A_{J} \mathbf{x}_{J}+l \mathbf{y}=\mathbf{b} \\ & \mathbf{x}, \mathbf{y} \geq \mathbf{0}\end{cases}\right.$
(D) $\left\{\begin{array}{l}\underset{\mathbf{u} \in \mathbb{R}^{m}}{\operatorname{maximize}} \quad \mathbf{u}^{\top} \mathbf{b} \\ \text { subject to } \\ \mathbf{u}^{\top} A \leq \mathbf{c}^{\top}\end{array}\right.$
(DRP) $\begin{cases}\underset{\mathbf{v}}{\operatorname{maximize}} & \mathbf{v}^{\top} \mathbf{b} \\ \text { subject to } & \mathbf{v}^{\top} A_{J} \leq \mathbf{0}^{\top} \\ & v_{1}, \ldots, v_{m} \leq 1\end{cases}$

## Lecture plan

Today, we modify the primal-dual method by solving (RP) instead of (DRP).

Here's what we have to figure out:

## Lecture plan

Today, we modify the primal-dual method by solving (RP) instead of (DRP).

Here's what we have to figure out:
(0. When we have the optimal solution to (RP), how do we find the optimal solution $\mathbf{v}$ to (DRP) (the augmenting direction)?

## Lecture plan

Today, we modify the primal-dual method by solving (RP) instead of (DRP).

Here's what we have to figure out:
(1) When we have the optimal solution to ( $\mathbf{R P}$ ), how do we find the optimal solution $\mathbf{v}$ to (DRP) (the augmenting direction)?
(2) What is the benefit from considering (RP) instead of (DRP)?

## Residual costs and dual solutions

Recall the formula:

$$
r_{i}=c_{i}-\mathbf{c}_{\mathcal{B}}^{\top} A_{\mathcal{B}}^{-1} A_{i}=c_{i}-\mathbf{u}^{\top} A_{i}
$$

## Residual costs and dual solutions

Recall the formula:

$$
r_{i}=c_{i}-\mathbf{c}_{\mathcal{B}}^{\top} A_{\mathcal{B}}^{-1} A_{i}=c_{i}-\mathbf{u}^{\top} A_{i}
$$

(The $i^{\text {th }}$ reduced cost is the slack in the $i^{\text {th }}$ dual constraint.)

## Residual costs and dual solutions

Recall the formula:

$$
r_{i}=c_{i}-\mathbf{c}_{\mathcal{B}}^{\top} A_{\mathcal{B}}^{-1} A_{i}=c_{i}-\mathbf{u}^{\top} A_{i}
$$

(The $i^{\text {th }}$ reduced cost is the slack in the $i^{\text {th }}$ dual constraint.)
In the (RP)-(DRP) primal-dual pair:
$(\mathbf{R P})\left\{\begin{array}{ll}\underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{R}^{m}}{\operatorname{minimize}} & y_{1}+\cdots+y_{m} \\ \text { subject to } & A_{J} \mathbf{x}_{J}+l \mathbf{y}=\mathbf{b} \\ & \mathbf{x}, \mathbf{y} \geq \mathbf{0}\end{array}(\mathbf{D R P}) \begin{cases}\underset{\mathbf{v} \in \mathbb{R}^{m}}{\operatorname{maximize}} & \mathbf{v}^{\top} \mathbf{b} \\ \text { subject to } & \mathbf{v}^{\top} A_{J} \leq \mathbf{0}^{\top} \\ & v_{1}, \ldots, v_{m} \leq 1\end{cases}\right.$

## Residual costs and dual solutions

Recall the formula:

$$
r_{i}=c_{i}-\mathbf{c}_{\mathcal{B}}^{\top} A_{\mathcal{B}}^{-1} A_{i}=c_{i}-\mathbf{u}^{\top} A_{i}
$$

(The $i^{\text {th }}$ reduced cost is the slack in the $i^{\text {th }}$ dual constraint.)
In the (RP)-(DRP) primal-dual pair:
$(\mathbf{R P})\left\{\begin{array}{ll}\underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{R}^{m}}{\operatorname{minimize}} & y_{1}+\cdots+y_{m} \\ \text { subject to } & A_{J} \mathbf{x}_{J}+l \mathbf{y}=\mathbf{b} \\ & \mathbf{x}, \mathbf{y} \geq \mathbf{0}\end{array}(\mathbf{D R P}) \begin{cases}\underset{\mathbf{v} \in \mathbb{R}^{m}}{\operatorname{maximize}} & \mathbf{v}^{\top} \mathbf{b} \\ \text { subject to } & \mathbf{v}^{\top} A_{J} \leq \mathbf{0}^{\top} \\ & v_{1}, \ldots, v_{m} \leq 1\end{cases}\right.$
Reduced cost of $y_{i}$

## Residual costs and dual solutions

Recall the formula:

$$
r_{i}=c_{i}-\mathbf{c}_{\mathcal{B}}^{\top} A_{\mathcal{B}}^{-1} A_{i}=c_{i}-\mathbf{u}^{\top} A_{i}
$$

(The $i^{\text {th }}$ reduced cost is the slack in the $i^{\text {th }}$ dual constraint.)
In the (RP)-(DRP) primal-dual pair:
$(\mathbf{R P})\left\{\begin{array}{ll}\underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{R}^{m}}{\operatorname{minimize}} & y_{1}+\cdots+y_{m} \\ \text { subject to } & A_{J} \mathbf{x}_{J}+l \mathbf{y}=\mathbf{b} \\ & \mathbf{x}, \mathbf{y} \geq \mathbf{0}\end{array}(\mathbf{D R P}) \begin{cases}\underset{\mathbf{v} \in \mathbb{R}^{m}}{\operatorname{maximize}} & \mathbf{v}^{\top} \mathbf{b} \\ \text { subject to } & \mathbf{v}^{\top} A_{J} \leq \mathbf{0}^{\top} \\ & v_{1}, \ldots, v_{m} \leq 1\end{cases}\right.$
Reduced cost of $y_{i}$ is the slack in " $v_{i} \leq 1$ "

## Residual costs and dual solutions

Recall the formula:

$$
r_{i}=c_{i}-\mathbf{c}_{\mathcal{B}}^{\top} A_{\mathcal{B}}^{-1} A_{i}=c_{i}-\mathbf{u}^{\top} A_{i}
$$

(The $i^{\text {th }}$ reduced cost is the slack in the $i^{\text {th }}$ dual constraint.)
In the (RP)-(DRP) primal-dual pair:
$(\mathbf{R P})\left\{\begin{array}{ll}\underset{\mathbf{x} \in \mathbb{R}^{n}, \mathbf{y} \in \mathbb{R}^{m}}{\operatorname{minimize}} & y_{1}+\cdots+y_{m} \\ \text { subject to } & A_{J} \mathbf{x}_{J}+l \mathbf{y}=\mathbf{b} \\ & \mathbf{x}, \mathbf{y} \geq \mathbf{0}\end{array}(\mathbf{D R P}) \begin{cases}\underset{\mathbf{v} \in \mathbb{R}^{m}}{\operatorname{maximize}} & \mathbf{v}^{\top} \mathbf{b} \\ \text { subject to } & \mathbf{v}^{\top} A_{J} \leq \mathbf{0}^{\top} \\ & v_{1}, \ldots, v_{m} \leq 1\end{cases}\right.$
Reduced cost of $y_{i}$ is the slack in " $v_{i} \leq 1$ " which is $1-v_{i}$.

## The old version and the new version

Previously, an iteration looked like:
(1) Given a feasible solution $\mathbf{u}$ to (D), check tightness of constraints to write down (DRP).
(2) Solve (DRP) (in some way) and find an optimal direction $\mathbf{v}$.
(3) Augment along $\mathbf{v}$ to get a better solution $\mathbf{u}+t \mathbf{v}$ to (D); repeat.

## The old version and the new version

Previously, an iteration looked like:
(1) Given a feasible solution $\mathbf{u}$ to (D), check tightness of constraints to write down (DRP).
(2) Solve (DRP) (in some way) and find an optimal direction $\mathbf{v}$.
(3) Augment along $\mathbf{v}$ to get a better solution $\mathbf{u}+t \mathbf{v}$ to (D); repeat.

Now:
© Given a feasible solution $\mathbf{u}$ to (D), check tightness of constraints to write down (RP).

## The old version and the new version

Previously, an iteration looked like:
(1) Given a feasible solution $\mathbf{u}$ to (D), check tightness of constraints to write down (DRP).
(2) Solve (DRP) (in some way) and find an optimal direction $\mathbf{v}$.
(3) Augment along $\mathbf{v}$ to get a better solution $\mathbf{u}+t \mathbf{v}$ to (D); repeat.

Now:
(1) Given a feasible solution $\mathbf{u}$ to (D), check tightness of constraints to write down (RP).
(2) Solve (RP) with the simplex method and use reduced costs of $\mathbf{y}$ to find $\mathbf{v}$.

## The old version and the new version

Previously, an iteration looked like:
(1) Given a feasible solution $\mathbf{u}$ to (D), check tightness of constraints to write down (DRP).
(2) Solve (DRP) (in some way) and find an optimal direction $\mathbf{v}$.
(3) Augment along $\mathbf{v}$ to get a better solution $\mathbf{u}+t \mathbf{v}$ to (D); repeat.

Now:
(1) Given a feasible solution $\mathbf{u}$ to (D), check tightness of constraints to write down (RP).
(2) Solve (RP) with the simplex method and use reduced costs of $\mathbf{y}$ to find $\mathbf{v}$.
© Augment along $\mathbf{v}$ just as before.

## Example from previous lecture

(P) $\begin{cases}\min & 2 x_{1}+2 x_{2}+x_{3} \\ \text { s. t. } & 2 x_{1}+x_{2}-4 x_{3}=3 \\ & 4 x_{1}-x_{2}+x_{3}=3 \\ & x_{1}, x_{2}, x_{3} \geq 0\end{cases}$
(D) $\left\{\begin{array}{rr}\max & 3 u_{1}+3 u_{2} \\ \text { s. t. } & 2 u_{1}+4 u_{2} \leq 2 \\ & u_{1}-u_{2} \leq 2 \\ & -4 u_{1}+u_{2} \leq 1\end{array}\right.$

## Example from previous lecture

For the solution $\mathbf{u}=(1,0)$ to ( $\mathbf{D}$ ), we write down (DRP), (RP) as follows:

```
(P) \(\begin{cases}\min & 2 x_{1}+2 x_{2}+x_{3} \\ \text { s.t. } & 2 x_{1}+x_{2}-4 x_{3}=3 \\ & 4 x_{1}-x_{2}+x_{3}=3 \\ & x_{1}, x_{2}, x_{3} \geq 0\end{cases}\)
```

(D) $\left\{\begin{array}{rr}\max & 3 u_{1}+3 u_{2} \\ \text { s. t. } & 2 u_{1}+4 u_{2} \leq 2 \\ & u_{1}-u_{2} \leq 2 \\ & -4 u_{1}+u_{2} \leq 1\end{array}\right.$
$($ DRP $) \begin{cases}\max & 3 v_{1}+3 v_{2} \\ \text { s. t. } & 2 v_{1}+4 v_{2} \leq 0 \\ & v_{1}, v_{2} \leq 1\end{cases}$

## Example from previous lecture

For the solution $\mathbf{u}=(1,0)$ to $(\mathbf{D})$, we write down (DRP), (RP) as follows:

$$
(\mathbf{P}) \begin{cases}\min & 2 x_{1}+2 x_{2}+x_{3} \\ \text { s. t. } & 2 x_{1}+x_{2}-4 x_{3}=3 \\ & 4 x_{1}-x_{2}+x_{3}=3 \\ & x_{1}, x_{2}, x_{3} \geq 0\end{cases}
$$

$(\mathbf{R P}) \begin{cases}\min & y_{1}+y_{2} \\ \text { s.t. } & 2 x_{1}+y_{1}=3 \\ & 4 x_{1}+y_{2}=3 \\ & x_{1}, y_{1}, y_{2} \geq 0\end{cases}$
(D) $\left\{\begin{array}{rr}\max & 3 u_{1}+3 u_{2} \\ \text { s. t. } & 2 u_{1}+4 u_{2} \leq 2 \\ & u_{1}-u_{2} \leq 2 \\ & -4 u_{1}+u_{2} \leq 1\end{array}\right.$
$($ DRP $) \begin{cases}\max & 3 v_{1}+3 v_{2} \\ \text { s. t. } & 2 v_{1}+4 v_{2} \leq 0 \\ & v_{1}, v_{2} \leq 1\end{cases}$

## Solving (RP) in this example

Put (RP) into the tableau:

|  | $x_{1}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: |
| $y_{1}$ | 2 | 1 | 0 | 3 |
| $y_{2}$ | 4 | 0 | 1 | 3 |
| $-z_{r p}$ | 0 | 1 | 1 | 0 |

## Solving (RP) in this example

Put (RP) into the tableau: (And row-reduce the $-z_{r p}$ row.)

|  | $x_{1}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: |
| $y_{1}$ | 2 | 1 | 0 | 3 |
| $y_{2}$ | 4 | 0 | 1 | 3 |
| $-z_{r p}$ | 0 | 1 | 1 | 0 |
| $-z_{r p}$ | -6 | 0 | 0 | -6 |

## Solving (RP) in this example

Put (RP) into the tableau: (And row-reduce the $-z_{r p}$ row.)

|  | $x_{1}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: |
| $y_{1}$ | 2 | 1 | 0 | 3 |
| $y_{2}$ | 4 | 0 | 1 | 3 |
| $-z_{r p}$ | 0 | 1 | 1 | 0 |
| $-z_{r p}$ | -6 | 0 | 0 | -6 |

Pivot on $x_{1}$, replacing $y_{2}$, to optimize:

|  | $x_{1}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: |
| $y_{1}$ | 0 | 1 | $-1 / 2$ | $3 / 2$ |
| $x_{1}$ | 1 | 0 | $1 / 4$ | $3 / 4$ |
| $-z_{r p}$ | 0 | 0 | $3 / 2$ | $-3 / 2$ |

## Solving (RP) in this example

Put (RP) into the tableau: (And row-reduce the $-z_{r p}$ row.)

|  | $x_{1}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: |
| $y_{1}$ | 2 | 1 | 0 | 3 |
| $y_{2}$ | 4 | 0 | 1 | 3 |
| $-z_{r p}$ | 0 | 1 | 1 | 0 |
| $-z_{r p}$ | -6 | 0 | 0 | -6 |

Pivot on $x_{1}$, replacing $y_{2}$, to optimize:

|  | $x_{1}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: |
| $y_{1}$ | 0 | 1 | $-1 / 2$ | $3 / 2$ |
| $x_{1}$ | 1 | 0 | $1 / 4$ | $3 / 4$ |
| $-z_{r p}$ | 0 | 0 | $3 / 2$ | $-3 / 2$ |

Optimal direction: $\mathbf{v}=(1,1)-\left(0, \frac{3}{2}\right)=\left(1,-\frac{1}{2}\right)$.

## Key observation about the primal-dual method

## Lemma

If we solve (RP) to optimality in one iteration, the same basic solution will be feasible for the next iteration.

## Key observation about the primal-dual method

## Lemma

If we solve (RP) to optimality in one iteration, the same basic solution will be feasible for the next iteration.

What changes in (RP) between the iterations?

## Key observation about the primal-dual method

## Lemma

If we solve (RP) to optimality in one iteration, the same basic solution will be feasible for the next iteration.

What changes in (RP) between the iterations? Only the variables present, not the constraints.

## Key observation about the primal-dual method

## Lemma

If we solve (RP) to optimality in one iteration, the same basic solution will be feasible for the next iteration.

What changes in (RP) between the iterations? Only the variables present, not the constraints.

To prove the lemma, we need to show: if an optimal solution to (RP) has $x_{i}>0$, then $x_{i}$ won't disappear from ( $\mathbf{R P}$ ) in the next iteration.

## Key observation about the primal-dual method

## Lemma

If we solve (RP) to optimality in one iteration, the same basic solution will be feasible for the next iteration.

What changes in (RP) between the iterations? Only the variables present, not the constraints.

To prove the lemma, we need to show: if an optimal solution to (RP) has $x_{i}>0$, then $x_{i}$ won't disappear from ( $\mathbf{R P}$ ) in the next iteration.

To use the lemma for good: use the previous optimal tableau to start solving (RP) in the next iteration.

## Proof of lemma

In our example:
(1) $\mathbf{u}=(1,0)$ has one tight constraint $2 u_{1}+4 u_{2} \leq 2$.

## Proof of lemma

In our example:
(1) $\mathbf{u}=(1,0)$ has one tight constraint $2 u_{1}+4 u_{2} \leq 2$.
(2) This corresponds to the variable $x_{1}$ in (RP). Our final solution to (RP) has $x_{1}=\frac{3}{4}>0$.

## Proof of lemma

In our example:
(1) $\mathbf{u}=(1,0)$ has one tight constraint $2 u_{1}+4 u_{2} \leq 2$.
(2) This corresponds to the variable $x_{1}$ in (RP). Our final solution to (RP) has $x_{1}=\frac{3}{4}>0$.

Can $x_{1}$ leave (RP) in the next iteration?

## Proof of lemma

In our example:
(1) $\mathbf{u}=(1,0)$ has one tight constraint $2 u_{1}+4 u_{2} \leq 2$.
(2) This corresponds to the variable $x_{1}$ in ( $\mathbf{R P}$ ). Our final solution to (RP) has $x_{1}=\frac{3}{4}>0$.

Can $x_{1}$ leave (RP) in the next iteration?
(0) Because $x_{1}>0$ in the optimal solution to (RP), we know that $2 v_{1}+4 v_{2} \leq 0$ is tight in (DRP). (Complementary slackness!)

## Proof of lemma

In our example:
(1) $\mathbf{u}=(1,0)$ has one tight constraint $2 u_{1}+4 u_{2} \leq 2$.
(2) This corresponds to the variable $x_{1}$ in ( $\mathbf{R P}$ ). Our final solution to (RP) has $x_{1}=\frac{3}{4}>0$.

Can $x_{1}$ leave (RP) in the next iteration?
(3) Because $x_{1}>0$ in the optimal solution to (RP), we know that $2 v_{1}+4 v_{2} \leq 0$ is tight in (DRP). (Complementary slackness!)
( Since $2 u_{1}+4 u_{2}=2$ and $2 v_{1}+4 v_{2}=0$, we know that

$$
2\left(u_{1}+t v_{1}\right)+4\left(u_{2}+t v_{2}\right)=\left(2 u_{1}+4 u_{2}\right)+t\left(2 v_{1}+4 v_{2}\right)=2 .
$$

## Proof of lemma

In our example:
(1) $\mathbf{u}=(1,0)$ has one tight constraint $2 u_{1}+4 u_{2} \leq 2$.
© This corresponds to the variable $x_{1}$ in (RP). Our final solution to (RP) has $x_{1}=\frac{3}{4}>0$.

Can $x_{1}$ leave (RP) in the next iteration?
(3) Because $x_{1}>0$ in the optimal solution to (RP), we know that $2 v_{1}+4 v_{2} \leq 0$ is tight in (DRP). (Complementary slackness!)
( Since $2 u_{1}+4 u_{2}=2$ and $2 v_{1}+4 v_{2}=0$, we know that

$$
2\left(u_{1}+t v_{1}\right)+4\left(u_{2}+t v_{2}\right)=\left(2 u_{1}+4 u_{2}\right)+t\left(2 v_{1}+4 v_{2}\right)=2 .
$$

(0) This constraint remains tight, so $x_{1}$ remains in (RP).

## Frozen variables

Frozen variables are how we exploit this fact.
We now write (RP) using all the variables of ( $\mathbf{P}$ ), but variables that "don't belong" are "frozen" and can't be pivoted on.

## Frozen variables

Frozen variables are how we exploit this fact.
We now write (RP) using all the variables of ( $\mathbf{P}$ ), but variables that "don't belong" are "frozen" and can't be pivoted on.

The initial tableau of (RP), written the old way:

|  | $x_{1}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: |
| $y_{1}$ | 2 | 1 | 0 | 3 |
| $y_{2}$ | 4 | 0 | 1 | 3 |
| $-z_{r p}$ | -6 | 0 | 0 | -6 |

## Frozen variables

Frozen variables are how we exploit this fact.
We now write (RP) using all the variables of $(\mathbf{P})$, but variables that "don't belong" are "frozen" and can't be pivoted on.

The initial tableau of (RP), written the old way:

|  | $x_{1}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: |
| $y_{1}$ | 2 | 1 | 0 | 3 |
| $y_{2}$ | 4 | 0 | 1 | 3 |
| $-z_{r p}$ | -6 | 0 | 0 | -6 |

Written the new way:

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $y_{1}$ | 2 | 1 | -4 | 1 | 0 | 3 |
| $y_{2}$ | 4 | -1 | 1 | 0 | 1 | 3 |
| $-z_{r p}$ | -6 | 0 | 3 | 0 | 0 | -6 |

## From one iteration of (RP) to the next

Suppose we solve this tableau to optimality:

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $y_{1}$ | 0 | $3 / 2$ | $-9 / 2$ | 1 | $-1 / 2$ | $3 / 2$ |
| $x_{1}$ | 1 | $-1 / 4$ | $1 / 4$ | 0 | $1 / 4$ | $3 / 4$ |
| $-z_{r p}$ | 0 | $-3 / 2$ | $9 / 2$ | 0 | $3 / 2$ | $-3 / 2$ |

## From one iteration of (RP) to the next

Suppose we solve this tableau to optimality:

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $y_{1}$ | 0 | $3 / 2$ | $-9 / 2$ | 1 | $-1 / 2$ | $3 / 2$ |
| $x_{1}$ | 1 | $-1 / 4$ | $1 / 4$ | 0 | $1 / 4$ | $3 / 4$ |
| $-z_{r p}$ | 0 | $-3 / 2$ | $9 / 2$ | 0 | $3 / 2$ | $-3 / 2$ |

As before:

- We find $\mathbf{v}=(1,1)-\left(0, \frac{3}{2}\right)=\left(1,-\frac{1}{2}\right)$.


## From one iteration of (RP) to the next

Suppose we solve this tableau to optimality:

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $y_{1}$ | 0 | $3 / 2$ | $-9 / 2$ | 1 | $-1 / 2$ | $3 / 2$ |
| $x_{1}$ | 1 | $-1 / 4$ | $1 / 4$ | 0 | $1 / 4$ | $3 / 4$ |
| $-z_{r p}$ | 0 | $-3 / 2$ | $9 / 2$ | 0 | $3 / 2$ | $-3 / 2$ |

As before:

- We find $\mathbf{v}=(1,1)-\left(0, \frac{3}{2}\right)=\left(1,-\frac{1}{2}\right)$.
- We augment $\mathbf{u}$ to $\mathbf{u}+t \mathbf{v}$ for the largest $t$ that keeps this feasible.


## From one iteration of (RP) to the next

Suppose we solve this tableau to optimality:

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $y_{1}$ | 0 | $3 / 2$ | $-9 / 2$ | 1 | $-1 / 2$ | $3 / 2$ |
| $x_{1}$ | 1 | $-1 / 4$ | $1 / 4$ | 0 | $1 / 4$ | $3 / 4$ |
| $-z_{r p}$ | 0 | $-3 / 2$ | $9 / 2$ | 0 | $3 / 2$ | $-3 / 2$ |

As before:

- We find $\mathbf{v}=(1,1)-\left(0, \frac{3}{2}\right)=\left(1,-\frac{1}{2}\right)$.
- We augment $\mathbf{u}$ to $\mathbf{u}+t \mathbf{v}$ for the largest $t$ that keeps this feasible.
- In this case, the constraint $u_{1}-u_{2} \leq 2$ means we stop at $t=\frac{2}{3}$, getting $\mathbf{u}+\frac{2}{3} \mathbf{v}=\left(\frac{5}{3},-\frac{1}{3}\right)$ as our next point.


## From one iteration of (RP) to the next

At $\mathbf{u}=\left(\frac{5}{3},-\frac{1}{3}\right), 2 u_{1}+4 u_{2} \leq 2$ is still tight, but so is $u_{1}-u_{2} \leq 2$.

## From one iteration of (RP) to the next

At $\mathbf{u}=\left(\frac{5}{3},-\frac{1}{3}\right), 2 u_{1}+4 u_{2} \leq 2$ is still tight, but so is $u_{1}-u_{2} \leq 2$.
So we keep $x_{1}$ unfrozen, but also unfreeze $x_{2}$ :

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $y_{1}$ | 0 | $3 / 2$ | $-9 / 2$ | 1 | $-1 / 2$ | $3 / 2$ |
| $x_{1}$ | 1 | $-1 / 4$ | $1 / 4$ | 0 | $1 / 4$ | $3 / 4$ |
| $-z_{r p}$ | 0 | $-3 / 2$ | $9 / 2$ | 0 | $3 / 2$ | $-3 / 2$ |

## From one iteration of (RP) to the next

At $\mathbf{u}=\left(\frac{5}{3},-\frac{1}{3}\right), 2 u_{1}+4 u_{2} \leq 2$ is still tight, but so is $u_{1}-u_{2} \leq 2$.
So we keep $x_{1}$ unfrozen, but also unfreeze $x_{2}$ :

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $y_{1}$ | 0 | $3 / 2$ | $-9 / 2$ | 1 | $-1 / 2$ | $3 / 2$ |
| $x_{1}$ | 1 | $-1 / 4$ | $1 / 4$ | 0 | $1 / 4$ | $3 / 4$ |
| $-z_{r p}$ | 0 | $-3 / 2$ | $9 / 2$ | 0 | $3 / 2$ | $-3 / 2$ |

For the next iteration of (RP), we solve this tableau to optimality.

## Ending the primal-dual algorithm

Our final tableau in the second iteration of (RP):

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $x_{2}$ | 0 | 1 | -3 | $2 / 3$ | $-1 / 3$ | 1 |
| $x_{1}$ | 1 | 0 | $-1 / 2$ | $1 / 6$ | $1 / 6$ | 1 |
| $-z_{r p}$ | 0 | 0 | 0 | 1 | 1 | 0 |

## Ending the primal-dual algorithm

Our final tableau in the second iteration of ( $\mathbf{R P}$ ):

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $x_{2}$ | 0 | 1 | -3 | $2 / 3$ | $-1 / 3$ | 1 |
| $x_{1}$ | 1 | 0 | $-1 / 2$ | $1 / 6$ | $1 / 6$ | 1 |
| $-z_{r p}$ | 0 | 0 | 0 | 1 | 1 | 0 |

This indicates that we've reached an optimal solution!

## Ending the primal-dual algorithm

Our final tableau in the second iteration of (RP):

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $x_{2}$ | 0 | 1 | -3 | $2 / 3$ | $-1 / 3$ | 1 |
| $x_{1}$ | 1 | 0 | $-1 / 2$ | $1 / 6$ | $1 / 6$ | 1 |
| $-z_{r p}$ | 0 | 0 | 0 | 1 | 1 | 0 |

This indicates that we've reached an optimal solution!

- The reduced costs of $y_{1}, y_{2}$ are both 1 . So $\mathbf{v}=(0,0)$, and we won't augment any further: our $\mathbf{u}=\left(\frac{5}{3},-\frac{1}{3}\right)$ is optimal.


## Ending the primal-dual algorithm

Our final tableau in the second iteration of (RP):

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $x_{2}$ | 0 | 1 | -3 | $2 / 3$ | $-1 / 3$ | 1 |
| $x_{1}$ | 1 | 0 | $-1 / 2$ | $1 / 6$ | $1 / 6$ | 1 |
| $-z_{r p}$ | 0 | 0 | 0 | 1 | 1 | 0 |

This indicates that we've reached an optimal solution!

- The reduced costs of $y_{1}, y_{2}$ are both 1 . So $\mathbf{v}=(0,0)$, and we won't augment any further: our $\mathbf{u}=\left(\frac{5}{3},-\frac{1}{3}\right)$ is optimal.
- In this tableau, we've found a solution $\mathbf{x}$ to ( $\mathbf{P}$ ) which has $x_{j}=0$ whenever the $j^{\text {th }}$ constraint of $(\mathbf{D})$ is slack.


## Ending the primal-dual algorithm

Our final tableau in the second iteration of (RP):

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $x_{2}$ | 0 | 1 | -3 | $2 / 3$ | $-1 / 3$ | 1 |
| $x_{1}$ | 1 | 0 | $-1 / 2$ | $1 / 6$ | $1 / 6$ | 1 |
| $-z_{r p}$ | 0 | 0 | 0 | 1 | 1 | 0 |

This indicates that we've reached an optimal solution!

- The reduced costs of $y_{1}, y_{2}$ are both 1 . So $\mathbf{v}=(0,0)$, and we won't augment any further: our $\mathbf{u}=\left(\frac{5}{3},-\frac{1}{3}\right)$ is optimal.
- In this tableau, we've found a solution $\mathbf{x}$ to ( $\mathbf{P}$ ) which has $x_{j}=0$ whenever the $j^{\text {th }}$ constraint of $(\mathbf{D})$ is slack. (Here, the third constraint $-4 u_{1}+u_{2} \leq 1$ is slack, and $x_{3}=0$.)


## Ending the primal-dual algorithm

Our final tableau in the second iteration of (RP):

|  | $x_{1}$ | $x_{2}$ | $x_{3}$ | $y_{1}$ | $y_{2}$ |  |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $x_{2}$ | 0 | 1 | -3 | $2 / 3$ | $-1 / 3$ | 1 |
| $x_{1}$ | 1 | 0 | $-1 / 2$ | $1 / 6$ | $1 / 6$ | 1 |
| $-z_{r p}$ | 0 | 0 | 0 | 1 | 1 | 0 |

This indicates that we've reached an optimal solution!

- The reduced costs of $y_{1}, y_{2}$ are both 1 . So $\mathbf{v}=(0,0)$, and we won't augment any further: our $\mathbf{u}=\left(\frac{5}{3},-\frac{1}{3}\right)$ is optimal.
- In this tableau, we've found a solution $\mathbf{x}$ to ( $\mathbf{P}$ ) which has $x_{j}=0$ whenever the $j^{\text {th }}$ constraint of $(\mathbf{D})$ is slack. (Here, the third constraint $-4 u_{1}+u_{2} \leq 1$ is slack, and $x_{3}=0$.) By complementary slackness, $\mathbf{x}=(1,1,0)$ is optimal for $(\mathbf{P})$.

