Primal-Dual Algorithm III Math 482, Lecture 31

Misha Lavrov

April 22, 2020

Starting the primal-dual algorithm

So far, we know how to do iterations of the primal-dual algorithm: given a dual-feasible point \mathbf{u}, improve it to a better point \mathbf{u}. By repeating this, we can solve the LP.

Starting the primal-dual algorithm

So far, we know how to do iterations of the primal-dual algorithm: given a dual-feasible point \mathbf{u}, improve it to a better point \mathbf{u}. By repeating this, we can solve the LP.

But how do we start the first iteration? How do we get the starting \mathbf{u} ?

Starting the primal-dual algorithm

So far, we know how to do iterations of the primal-dual algorithm: given a dual-feasible point \mathbf{u}, improve it to a better point \mathbf{u}. By repeating this, we can solve the LP.

But how do we start the first iteration? How do we get the starting \mathbf{u} ?

There are several possible answers:

- Sometimes, a simple point like $\mathbf{u}=\mathbf{0}$ is obviously feasible.

Starting the primal-dual algorithm

So far, we know how to do iterations of the primal-dual algorithm: given a dual-feasible point \mathbf{u}, improve it to a better point \mathbf{u}. By repeating this, we can solve the LP.

But how do we start the first iteration? How do we get the starting \mathbf{u} ?

There are several possible answers:

- Sometimes, a simple point like $\mathbf{u}=\mathbf{0}$ is obviously feasible.
- The only fully general answer is a two-phase method. If we do this, we might as well not use the primal-dual algorithm.

Starting the primal-dual algorithm

So far, we know how to do iterations of the primal-dual algorithm: given a dual-feasible point \mathbf{u}, improve it to a better point \mathbf{u}. By repeating this, we can solve the LP.

But how do we start the first iteration? How do we get the starting \mathbf{u} ?

There are several possible answers:

- Sometimes, a simple point like $\mathbf{u}=\mathbf{0}$ is obviously feasible.
- The only fully general answer is a two-phase method. If we do this, we might as well not use the primal-dual algorithm.
- In some cases, there is a trick we can do to create a dual feasible solution.

The trick

Consider the following primal-dual pair of linear programs:
$(\mathbf{P}) \begin{cases}\text { minimize } & 2 x_{1}-x_{2}+4 x_{3} \\ \text { subject to } & x_{1}+2 x_{2}-3 x_{3}=2 \\ & x_{1}-x_{2}+x_{3}=3 \\ & x_{1}, x_{2}, x_{3} \geq 0\end{cases}$
(D) $\left\{\begin{aligned} \text { maximize } & 2 u_{1}+3 u_{2} \\ \text { subject to } & \\ u_{1}+u_{2} & \leq 2 \\ 2 u_{1}-u_{2} & \leq-1 \\ & -3 u_{1}+u_{2}\end{aligned}\right.$

The trick

Consider the following primal-dual pair of linear programs:

$$
(\mathbf{P}) \begin{cases}\operatorname{minimize} & 2 x_{1}-x_{2}+4 x_{3} \\ \text { subject to } \quad & x_{1}+2 x_{2}-3 x_{3}=2 \\ & x_{1}-x_{2}+x_{3}=3 \\ & x_{1}, x_{2}, x_{3} \geq 0\end{cases}
$$

The trick relies on making a guess: that the optimal solution to (P) has $x_{1}+x_{2}+x_{3} \leq 100$.

The trick

Consider the following primal-dual pair of linear programs:

$$
\left.\begin{array}{l}
\text { (P) } \begin{cases}\text { minimize } & 2 x_{1}-x_{2}+4 x_{3} \\
\text { subject to } & x_{1}+2 x_{2}-3 x_{3}=2 \\
x_{1}-x_{2}+x_{3} & =3\end{cases} \\
x_{1}+x_{2}+x_{3} \leq 100 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{array}\right\}
$$

The trick relies on making a guess: that the optimal solution to (P) has $x_{1}+x_{2}+x_{3} \leq 100$.

The trick

Consider the following primal-dual pair of linear programs:

$$
\begin{aligned}
& \text { (minimize } 2 x_{1}-x_{2}+4 x_{3} \\
& \left\{\begin{array}{ll}
\text { subject to } & \begin{array}{l}
x_{1}+2 x_{2}-3 x_{3}
\end{array}=2 \\
& x_{1}-x_{2}+x_{3}
\end{array}=3\right. \\
& x_{1}+x_{2}+x_{3}+x_{4}=100 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0 \\
& \text { (D) }\left\{\begin{array}{rl}
\text { maximize } & 2 u_{1}+3 u_{2} \\
\text { subject to } & \\
u_{1}+u_{2} & \leq 2 \\
& 2 u_{1}-u_{2}
\end{array} \leq-1 .\right.
\end{aligned}
$$

The trick relies on making a guess: that the optimal solution to (P) has $x_{1}+x_{2}+x_{3} \leq 100$.

The trick

Consider the following primal-dual pair of linear programs:

$$
\begin{aligned}
& \text { (minimize } 2 x_{1}-x_{2}+4 x_{3} \\
& \text { subject to } x_{1}+2 x_{2}-3 x_{3}=2 \\
& x_{1}-x_{2}+x_{3}=3 \\
& x_{1}+x_{2}+x_{3}+x_{4}=100 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{aligned}
$$

The trick relies on making a guess: that the optimal solution to (P) has $x_{1}+x_{2}+x_{3} \leq 100$.

The trick, continued

The new (D) always has a feasible solution!

$$
\text { (D) }\left\{\begin{array}{rrl}
\underset{\mathbf{u} \in \mathbb{R}^{3}}{\operatorname{maximize}} & 2 u_{1}+3 u_{2}+100 u_{3} \\
\text { subject to } & u_{1}+u_{2}+ & u_{3} \leq 2 \\
& 2 u_{1}-u_{2}+ & u_{3} \leq-1 \\
& -3 u_{1}+u_{2}+ & u_{3} \leq 4 \\
& & u_{3} \leq 0
\end{array}\right.
$$

The trick, continued

The new (D) always has a feasible solution!

$$
\text { (D) }\left\{\begin{array}{rrl}
\underset{\mathbf{u} \in \mathbb{R}^{3}}{\operatorname{maximize}} & 2 u_{1}+3 u_{2}+100 u_{3} \\
\text { subject to } & u_{1}+u_{2}+ & u_{3} \leq 2 \\
& 2 u_{1}-u_{2}+ & u_{3} \leq-1 \\
& -3 u_{1}+u_{2}+ & u_{3} \leq 4 \\
& & u_{3} \leq 0
\end{array}\right.
$$

- Set $u_{1}=u_{2}=0$. (In general, set all variables to 0 except the extra one, u_{m+1}.)
- The inequalities simplify to $u_{3} \leq 2, u_{3} \leq-1, u_{3} \leq 4, u_{3} \leq 0$. (In general, to many upper bounds on u_{m+1}.)
- Set $u_{3}=-1$. (In general, set u_{m+1} to the least upper bound.)

An example of the primal-dual method

Let's solve this example to see the primal-dual algorithm in action.

An example of the primal-dual method

Let's solve this example to see the primal-dual algorithm in action.

$$
\text { (D) }\left\{\begin{array}{lcl}
\underset{\mathbf{u} \in \mathbb{R}^{3}}{\operatorname{maximize}} & 2 u_{1}+3 u_{2}+100 u_{3} \\
\text { subject to } & u_{1}+u_{2}+ & u_{3} \leq 2 \\
& 2 u_{1}-u_{2}+ & u_{3} \leq-1 \\
& -3 u_{1}+u_{2}+ & u_{3} \leq 4 \\
& & u_{3} \leq 0
\end{array}\right.
$$

An example of the primal-dual method

Let's solve this example to see the primal-dual algorithm in action.

$$
\text { (D) }\left\{\begin{array}{rrl}
\underset{\mathbf{u} \in \mathbb{R}^{3}}{\operatorname{maximize}} & 2 u_{1}+3 u_{2}+100 u_{3} \\
\text { subject to } & u_{1}+u_{2}+ & u_{3} \leq 2 \\
& 2 u_{1}-u_{2}+ & u_{3} \leq-1 \\
-3 u_{1}+u_{2}+ & u_{3} \leq 4 \\
& & u_{3} \leq 0
\end{array}\right.
$$

At $\mathbf{u}=(0,0,-1)$, only the second constraint is tight.

An example of the primal-dual method

Let's solve this example to see the primal-dual algorithm in action.

$$
\text { (D) }\left\{\begin{array}{rcl}
\underset{\mathbf{u} \in \mathbb{R}^{3}}{\operatorname{maximize}} & 2 u_{1}+3 u_{2}+100 u_{3} \\
\text { subject to } & u_{1}+u_{2}+ & u_{3} \leq 2 \\
& 2 u_{1}-u_{2}+ & u_{3} \leq-1 \\
& -3 u_{1}+u_{2}+ & u_{3} \leq 4 \\
& & u_{3} \leq 0
\end{array}\right.
$$

At $\mathbf{u}=(0,0,-1)$, only the second constraint is tight.
In (RP), all variables except x_{2} will be frozen.

An example of the primal-dual method

Let's solve this example to see the primal-dual algorithm in action.

$$
\text { (D) }\left\{\begin{array}{lcl}
\underset{\mathbf{u} \in \mathbb{R}^{3}}{\operatorname{maximize}} & 2 u_{1}+3 u_{2}+100 u_{3} \\
\text { subject to } & u_{1}+u_{2}+ & u_{3} \leq 2 \\
& 2 u_{1}-u_{2}+ & u_{3} \leq-1 \\
& -3 u_{1}+u_{2}+ & u_{3} \leq 4 \\
& & u_{3} \leq 0
\end{array}\right.
$$

At $\mathbf{u}=(0,0,-1)$, only the second constraint is tight.
In (RP), all variables except x_{2} will be frozen.
We will start (RP) with the basic feasible solution it always has: where the \mathbf{y}-variables are all basic.

Writing down (RP)'s tableau

We look at (\mathbf{P}) to write a starting tableau for ($\mathbf{R P}$).

$$
(\mathbf{P})\left\{\begin{array}{lll}
\text { minimize } & 2 x_{1}-x_{2}+4 x_{3} & \\
\text { subject to } & x_{1}+2 x_{2}-3 x_{3} & =2 \\
& x_{1}-x_{2}+x_{3} & =3 \\
& x_{1}+x_{2}+x_{3}+x_{4} & =100 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}\right.
$$

Although only x_{2} will be present in (RP), we'll include all columns, and "freeze" the ones we don't want.

Writing down (RP)'s tableau

We look at (\mathbf{P}) to write a starting tableau for ($\mathbf{R P}$).

$$
(\mathbf{P})\left\{\begin{array}{lll}
\text { minimize } & 2 x_{1}-x_{2}+4 x_{3} & \\
\text { subject to } & x_{1}+2 x_{2}-3 x_{3} & =2 \\
& x_{1}-x_{2}+x_{3} & =3 \\
& x_{1}+x_{2}+x_{3}+x_{4} & =100 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}\right.
$$

Although only x_{2} will be present in (RP), we'll include all columns, and "freeze" the ones we don't want.

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
y_{1}	1	2	-3	0	1	0	0	2
y_{2}	1	-1	1	0	0	1	0	3
y_{3}	1	1	1	1	0	0	1	100
$-z_{r p}$	0	0	0	0	1	1	1	0

Writing down (RP)'s tableau

We look at (\mathbf{P}) to write a starting tableau for ($\mathbf{R P}$).

$$
(\mathbf{P})\left\{\begin{array}{lll}
\text { minimize } & 2 x_{1}-x_{2}+4 x_{3} & \\
\text { subject to } & x_{1}+2 x_{2}-3 x_{3} & =2 \\
& x_{1}-x_{2}+x_{3} & =3 \\
& x_{1}+x_{2}+x_{3}+x_{4} & =100 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}\right.
$$

Although only x_{2} will be present in (RP), we'll include all columns, and "freeze" the ones we don't want.

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
y_{1}	1	2	-3	0	1	0	0	2
y_{2}	1	-1	1	0	0	1	0	3
y_{3}	1	1	1	1	0	0	1	100
$-z_{r p}$	-3	-2	1	-1	0	0	0	-105

The first iteration: pivoting in (RP)

In this tableau, there's only one pivoting step we can do: bring in x_{2}, remove y_{1}.

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
x_{2}	$1 / 2$	1	$-3 / 2$	0	$1 / 2$	0	0	1
y_{2}	$3 / 2$	0	$-1 / 2$	0	$1 / 2$	1	0	4
y_{3}	$1 / 2$	0	$5 / 2$	1	$-1 / 2$	0	1	99
$-z_{r p}$	-2	0	-2	-1	1	0	0	-103

The first iteration: pivoting in (RP)

In this tableau, there's only one pivoting step we can do: bring in x_{2}, remove y_{1}.

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
x_{2}	$1 / 2$	1	$-3 / 2$	0	$1 / 2$	0	0	1
y_{2}	$3 / 2$	0	$-1 / 2$	0	$1 / 2$	1	0	4
y_{3}	$1 / 2$	0	$5 / 2$	1	$-1 / 2$	0	1	99
$-z_{r p}$	-2	0	-2	-1	1	0	0	-103

The optimal solution to (DRP) has

$$
\mathbf{v}=\mathbf{1}-\mathbf{r}_{\mathcal{Y}}=(1,1,1)-(0,0,0)=(0,1,1)
$$

The first iteration: pivoting in (RP)

In this tableau, there's only one pivoting step we can do: bring in x_{2}, remove y_{1}.

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
x_{2}	$1 / 2$	1	$-3 / 2$	0	$1 / 2$	0	0	1
y_{2}	$3 / 2$	0	$-1 / 2$	0	$1 / 2$	1	0	4
y_{3}	$1 / 2$	0	$5 / 2$	1	$-1 / 2$	0	1	99
$-z_{r p}$	-2	0	-2	-1	1	0	0	-103

The optimal solution to (DRP) has

$$
\mathbf{v}=\mathbf{1}-\mathbf{r}_{\mathcal{Y}}=(1,1,1)-(0,0,0)=(0,1,1)
$$

Next, we will augment $\mathbf{u}=(0,0,-1)$ by adding a multiple of $\mathbf{v}=(0,1,1)$ to it, while maintaining dual feasibility.

The first iteration: augmenting u

Here are the dual constraints:

$$
\text { (D) }\left\{\begin{array}{rrl}
\text { maximize } & 2 u_{1}+3 u_{2}+100 u_{3} \\
\text { subject to } & u_{1}+u_{2}+ & u_{3} \leq 2 \\
2 u_{1}-u_{2}+ & u_{3} \leq-1 \\
-3 u_{1}+u_{2}+ & u_{3} \leq 4 \\
& & u_{3} \leq 0
\end{array}\right.
$$

We are going from $\mathbf{u}=(0,0,-1)$ to $\mathbf{u}+t \mathbf{v}=(0, t, t-1)$.

The first iteration: augmenting u

Here are the dual constraints:

We are going from $\mathbf{u}=(0,0,-1)$ to $\mathbf{u}+t \mathbf{v}=(0, t, t-1)$.

- $u_{1}+u_{2}+u_{3} \leq 2$ says $2 t-1 \leq 2$ or $t \leq \frac{3}{2}$.

The first iteration: augmenting u

Here are the dual constraints:

We are going from $\mathbf{u}=(0,0,-1)$ to $\mathbf{u}+t \mathbf{v}=(0, t, t-1)$.

- $u_{1}+u_{2}+u_{3} \leq 2$ says $2 t-1 \leq 2$ or $t \leq \frac{3}{2}$.
- $2 u_{1}-u_{2}+u_{3} \leq-1$ says $-1 \leq-1$. (It will remain tight but never be violated.)

The first iteration: augmenting u

Here are the dual constraints:

We are going from $\mathbf{u}=(0,0,-1)$ to $\mathbf{u}+t \mathbf{v}=(0, t, t-1)$.

- $u_{1}+u_{2}+u_{3} \leq 2$ says $2 t-1 \leq 2$ or $t \leq \frac{3}{2}$.
- $2 u_{1}-u_{2}+u_{3} \leq-1$ says $-1 \leq-1$. (It will remain tight but never be violated.)
- $-3 u_{1}+u_{2}+u_{3} \leq 4$ says $2 t-1 \leq 4$ or $t \leq \frac{5}{2}$.

The first iteration: augmenting u

Here are the dual constraints:

$$
\text { (D) }\left\{\begin{array}{rrl}
\text { maximize } & 2 u_{1}+3 u_{2}+100 u_{3} \\
\text { subject to } & u_{1}+u_{2}+ & u_{3} \leq 2 \\
2 u_{1}-u_{2}+ & u_{3} \leq-1 \\
& -3 u_{1}+u_{2}+ & u_{3} \leq 4 \\
& & u_{3} \leq 0
\end{array}\right.
$$

We are going from $\mathbf{u}=(0,0,-1)$ to $\mathbf{u}+t \mathbf{v}=(0, t, t-1)$.

- $u_{1}+u_{2}+u_{3} \leq 2$ says $2 t-1 \leq 2$ or $t \leq \frac{3}{2}$.
- $2 u_{1}-u_{2}+u_{3} \leq-1$ says $-1 \leq-1$. (It will remain tight but never be violated.)
- $-3 u_{1}+u_{2}+u_{3} \leq 4$ says $2 t-1 \leq 4$ or $t \leq \frac{5}{2}$.
- $u_{3} \leq 0$ says $t \leq 1$. (It becomes tight when $t=1$.)

Preparing the second iteration

Out of $t \leq \frac{3}{2}, t \leq \frac{5}{2}, t \leq 1$, the limit $t=1$ is the strictest, so we go to the new point $\mathbf{u}+1 \mathbf{v}=(0,1,0)$.

Preparing the second iteration

Out of $t \leq \frac{3}{2}, t \leq \frac{5}{2}, t \leq 1$, the limit $t=1$ is the strictest, so we go to the new point $\mathbf{u}+1 \mathbf{v}=(0,1,0)$.

We saw that the second constraint of (D) remains tight, and at $t=1$, the fourth constraint becomes tight.

Preparing the second iteration

Out of $t \leq \frac{3}{2}, t \leq \frac{5}{2}, t \leq 1$, the limit $t=1$ is the strictest, so we go to the new point $\mathbf{u}+1 \mathbf{v}=(0,1,0)$.

We saw that the second constraint of (D) remains tight, and at $t=1$, the fourth constraint becomes tight.

In our tableau for (RP), we unfreeze x_{4} :

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
x_{2}	$1 / 2$	1	$-3 / 2$	0	$1 / 2$	0	0	1
y_{2}	$3 / 2$	0	$-1 / 2$	0	$1 / 2$	1	0	4
y_{3}	$1 / 2$	0	$5 / 2$	1	$-1 / 2$	0	1	99
$-z_{r p}$	-2	0	-2	-1	1	0	0	-103

The second iteration: pivoting in (RP)

In this tableau, once we pivot to bring in x_{4} and remove y_{3}, we're optimal again:

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
x_{2}	$1 / 2$	1	$-3 / 2$	0	$1 / 2$	0	0	1
y_{2}	$3 / 2$	0	$-1 / 2$	0	$1 / 2$	1	0	4
x_{4}	$1 / 2$	0	$5 / 2$	1	$-1 / 2$	0	1	99
$-z_{r p}$	$-3 / 2$	0	$1 / 2$	0	$1 / 2$	0	1	-4

The second iteration: pivoting in (RP)

In this tableau, once we pivot to bring in x_{4} and remove y_{3}, we're optimal again:

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
x_{2}	$1 / 2$	1	$-3 / 2$	0	$1 / 2$	0	0	1
y_{2}	$3 / 2$	0	$-1 / 2$	0	$1 / 2$	1	0	4
x_{4}	$1 / 2$	0	$5 / 2$	1	$-1 / 2$	0	1	99
$-z_{r p}$	$-3 / 2$	0	$1 / 2$	0	$1 / 2$	0	1	-4

The optimal solution to (DRP) has

$$
\mathbf{v}=\mathbf{1}-\mathbf{r}_{\mathcal{Y}}=(1,1,1)-\left(\frac{1}{2}, 0,1\right)=\left(\frac{1}{2}, 1,0\right) .
$$

The second iteration: pivoting in (RP)

In this tableau, once we pivot to bring in x_{4} and remove y_{3}, we're optimal again:

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
x_{2}	$1 / 2$	1	$-3 / 2$	0	$1 / 2$	0	0	1
y_{2}	$3 / 2$	0	$-1 / 2$	0	$1 / 2$	1	0	4
x_{4}	$1 / 2$	0	$5 / 2$	1	$-1 / 2$	0	1	99
$-z_{r p}$	$-3 / 2$	0	$1 / 2$	0	$1 / 2$	0	1	-4

The optimal solution to (DRP) has

$$
\mathbf{v}=\mathbf{1}-\mathbf{r}_{\mathcal{Y}}=(1,1,1)-\left(\frac{1}{2}, 0,1\right)=\left(\frac{1}{2}, 1,0\right)
$$

Next, we will augment $\mathbf{u}=(0,1,0)$ by adding a multiple of $\mathbf{v}=\left(\frac{1}{2}, 1,0\right)$ to it, while maintaining dual feasibility.

The second iteration: augmenting u

Here are the dual constraints:

$$
\text { (D) }\left\{\begin{array}{lrl}
\text { maximize } & 2 u_{1}+3 u_{2}+100 u_{3} \\
\text { subject to } & u_{1}+u_{2}+ & u_{3} \leq 2 \\
& 2 u_{1}-u_{2}+ & u_{3} \leq-1 \\
& -3 u_{1}+u_{2}+ & u_{3} \leq 4 \\
& & u_{3} \leq 0
\end{array}\right.
$$

We are going from $\mathbf{u}=(0,1,0)$ to $\mathbf{u}+t \mathbf{v}=\left(\frac{1}{2} t, 1+t, 0\right)$.

The second iteration: augmenting u

Here are the dual constraints:

We are going from $\mathbf{u}=(0,1,0)$ to $\mathbf{u}+t \mathbf{v}=\left(\frac{1}{2} t, 1+t, 0\right)$.

- $u_{1}+u_{2}+u_{3} \leq 2$ says $1+\frac{3}{2} t \leq 2$ or $t \leq \frac{2}{3}$.

The second iteration: augmenting u

Here are the dual constraints:

We are going from $\mathbf{u}=(0,1,0)$ to $\mathbf{u}+t \mathbf{v}=\left(\frac{1}{2} t, 1+t, 0\right)$.

- $u_{1}+u_{2}+u_{3} \leq 2$ says $1+\frac{3}{2} t \leq 2$ or $t \leq \frac{2}{3}$.
- $2 u_{1}-u_{2}+u_{3} \leq-1$ says $-1 \leq-1$. (It will remain tight but never be violated.)

The second iteration: augmenting u

Here are the dual constraints:

We are going from $\mathbf{u}=(0,1,0)$ to $\mathbf{u}+t \mathbf{v}=\left(\frac{1}{2} t, 1+t, 0\right)$.

- $u_{1}+u_{2}+u_{3} \leq 2$ says $1+\frac{3}{2} t \leq 2$ or $t \leq \frac{2}{3}$.
- $2 u_{1}-u_{2}+u_{3} \leq-1$ says $-1 \leq-1$. (It will remain tight but never be violated.)
- $-3 u_{1}+u_{2}+u_{3} \leq 4$ says $1-\frac{1}{2} t \leq 4$ or $t \geq-6$. (Not relevant.)

The second iteration: augmenting u

Here are the dual constraints:

$$
\text { (D) }\left\{\begin{array}{lrl}
\text { maximize } & 2 u_{1}+3 u_{2}+100 u_{3} \\
\text { subject to } & u_{1}+u_{2}+ & u_{3} \leq 2 \\
& 2 u_{1}-u_{2}+ & u_{3} \leq-1 \\
& -3 u_{1}+u_{2}+ & u_{3} \leq 4 \\
& & u_{3} \leq 0
\end{array}\right.
$$

We are going from $\mathbf{u}=(0,1,0)$ to $\mathbf{u}+t \mathbf{v}=\left(\frac{1}{2} t, 1+t, 0\right)$.

- $u_{1}+u_{2}+u_{3} \leq 2$ says $1+\frac{3}{2} t \leq 2$ or $t \leq \frac{2}{3}$.
- $2 u_{1}-u_{2}+u_{3} \leq-1$ says $-1 \leq-1$. (It will remain tight but never be violated.)
- $-3 u_{1}+u_{2}+u_{3} \leq 4$ says $1-\frac{1}{2} t \leq 4$ or $t \geq-6$. (Not relevant.)
- $u_{3} \leq 0$ says $0 \leq 0$. (It will remain tight but never be violated)

Preparing the third iteration

Our only limit on t is $t \leq \frac{2}{3}$, so we go to the new point $\mathbf{u}+\frac{2}{3} \mathbf{v}=\left(\frac{1}{3}, \frac{5}{3}, 0\right)$.

Preparing the third iteration

Our only limit on t is $t \leq \frac{2}{3}$, so we go to the new point $\mathbf{u}+\frac{2}{3} \mathbf{v}=\left(\frac{1}{3}, \frac{5}{3}, 0\right)$.
The second and fourth constraint of (D) remain tight; at $t=\frac{2}{3}$, the first constraint also becomes tight.

Preparing the third iteration

Our only limit on t is $t \leq \frac{2}{3}$, so we go to the new point $\mathbf{u}+\frac{2}{3} \mathbf{v}=\left(\frac{1}{3}, \frac{5}{3}, 0\right)$.
The second and fourth constraint of (D) remain tight; at $t=\frac{2}{3}$, the first constraint also becomes tight.

In our tableau for (RP), we unfreeze x_{1} :

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
x_{2}	$1 / 2$	1	$-3 / 2$	0	$1 / 2$	0	0	1
y_{2}	$3 / 2$	0	$-1 / 2$	0	$1 / 2$	1	0	4
x_{4}	$1 / 2$	0	$5 / 2$	1	$-1 / 2$	0	1	99
$-z_{r p}$	$-3 / 2$	0	$1 / 2$	0	$1 / 2$	0	1	-4

The third iteration: pivoting in (RP)

In this tableau, we can pivot on x_{1}, and it will replace x_{2} :

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
x_{1}	1	2	-3	0	1	0	0	2
y_{2}	0	-3	4	0	-1	1	0	1
x_{4}	0	-1	4	1	-1	0	1	98
$-z_{r p}$	0	3	-4	0	2	0	1	-1

The third iteration: pivoting in (RP)

In this tableau, we can pivot on x_{1}, and it will replace x_{2} :

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
x_{1}	1	2	-3	0	1	0	0	2
y_{2}	0	-3	4	0	-1	1	0	1
x_{4}	0	-1	4	1	-1	0	1	98
$-z_{r p}$	0	3	-4	0	2	0	1	-1

The optimal solution to (DRP) has

$$
\mathbf{v}=\mathbf{1}-\mathbf{r}_{\mathcal{Y}}=(1,1,1)-(2,0,1)=(-1,1,0)
$$

The third iteration: pivoting in (RP)

In this tableau, we can pivot on x_{1}, and it will replace x_{2} :

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
x_{1}	1	2	-3	0	1	0	0	2
y_{2}	0	-3	4	0	-1	1	0	1
x_{4}	0	-1	4	1	-1	0	1	98
$-z_{r p}$	0	3	-4	0	2	0	1	-1

The optimal solution to (DRP) has

$$
\mathbf{v}=\mathbf{1}-\mathbf{r}_{\mathcal{Y}}=(1,1,1)-(2,0,1)=(-1,1,0) .
$$

Next, we will augment $\mathbf{u}=\left(\frac{1}{3}, \frac{5}{3}, 0\right)$ by adding a multiple of $\mathbf{v}=(-1,1,0)$ to it, while maintaining dual feasibility.

The third iteration: augmenting u

Here are the dual constraints:

We are going from $\mathbf{u}=\left(\frac{1}{3}, \frac{5}{3}, 0\right)$ to $\mathbf{u}+t \mathbf{v}=\left(\frac{1}{3}-t, \frac{5}{3}+t, 0\right)$.

The third iteration: augmenting u

Here are the dual constraints:

We are going from $\mathbf{u}=\left(\frac{1}{3}, \frac{5}{3}, 0\right)$ to $\mathbf{u}+t \mathbf{v}=\left(\frac{1}{3}-t, \frac{5}{3}+t, 0\right)$.

- $u_{1}+u_{2}+u_{3} \leq 2$ says $2 \leq 2$. (It will remain tight but never be violated.)

The third iteration: augmenting u

Here are the dual constraints:

We are going from $\mathbf{u}=\left(\frac{1}{3}, \frac{5}{3}, 0\right)$ to $\mathbf{u}+t \mathbf{v}=\left(\frac{1}{3}-t, \frac{5}{3}+t, 0\right)$.

- $u_{1}+u_{2}+u_{3} \leq 2$ says $2 \leq 2$. (It will remain tight but never be violated.)
- $2 u_{1}-u_{2}+u_{3} \leq-1$ says $-1-t \leq-1$. (For $t>0$, it will become slack.)

The third iteration: augmenting u

Here are the dual constraints:

We are going from $\mathbf{u}=\left(\frac{1}{3}, \frac{5}{3}, 0\right)$ to $\mathbf{u}+t \mathbf{v}=\left(\frac{1}{3}-t, \frac{5}{3}+t, 0\right)$.

- $u_{1}+u_{2}+u_{3} \leq 2$ says $2 \leq 2$. (It will remain tight but never be violated.)
- $2 u_{1}-u_{2}+u_{3} \leq-1$ says $-1-t \leq-1$. (For $t>0$, it will become slack.)
- $-3 u_{1}+u_{2}+u_{3} \leq 4$ says $\frac{2}{3}+4 t \leq 4$ or $t \leq \frac{5}{6}$.

The third iteration: augmenting u

Here are the dual constraints:

We are going from $\mathbf{u}=\left(\frac{1}{3}, \frac{5}{3}, 0\right)$ to $\mathbf{u}+t \mathbf{v}=\left(\frac{1}{3}-t, \frac{5}{3}+t, 0\right)$.

- $u_{1}+u_{2}+u_{3} \leq 2$ says $2 \leq 2$. (It will remain tight but never be violated.)
- $2 u_{1}-u_{2}+u_{3} \leq-1$ says $-1-t \leq-1$. (For $t>0$, it will become slack.)
- $-3 u_{1}+u_{2}+u_{3} \leq 4$ says $\frac{2}{3}+4 t \leq 4$ or $t \leq \frac{5}{6}$.
- $u_{3} \leq 0$ says $0 \leq 0$. (It will remain tight but never be violated)

Preparing the fourth iteration

Our only limit on t is $t \leq \frac{5}{6}$, so we go to the new point $\mathbf{u}+\frac{5}{6} \mathbf{v}=\left(-\frac{1}{2}, \frac{5}{2}, 0\right)$.

Preparing the fourth iteration

Our only limit on t is $t \leq \frac{5}{6}$, so we go to the new point
$\mathbf{u}+\frac{5}{6} \mathbf{v}=\left(-\frac{1}{2}, \frac{5}{2}, 0\right)$.
The first and fourth constraint of (D) remain tight; at $t=\frac{5}{6}$, the third constraint also becomes tight. However, the second constraint becomes slack.

Preparing the fourth iteration

Our only limit on t is $t \leq \frac{5}{6}$, so we go to the new point $\mathbf{u}+\frac{5}{6} \mathbf{v}=\left(-\frac{1}{2}, \frac{5}{2}, 0\right)$.
The first and fourth constraint of (D) remain tight; at $t=\frac{5}{6}$, the third constraint also becomes tight. However, the second constraint becomes slack.

In our tableau for (RP), we unfreeze x_{3} but freeze x_{2} :

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
x_{1}	1	2	-3	0	1	0	0	2
y_{2}	0	-3	4	0	-1	1	0	1
x_{4}	0	-1	4	1	-1	0	1	98
$-z_{r p}$	0	3	-4	0	2	0	1	-1

The fourth iteration: pivoting in (RP)

In this tableau, we can pivot on x_{3}, and it will replace y_{2} :

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
x_{1}	1	$-1 / 4$	0	0	$1 / 4$	$3 / 4$	0	$11 / 4$
x_{3}	0	$-3 / 4$	1	0	$-1 / 4$	$1 / 4$	0	$1 / 4$
x_{4}	0	2	0	1	0	-1	1	97
$-z_{r p}$	0	0	0	0	1	1	1	0

The fourth iteration: pivoting in (RP)

In this tableau, we can pivot on x_{3}, and it will replace y_{2} :

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
x_{1}	1	$-1 / 4$	0	0	$1 / 4$	$3 / 4$	0	$11 / 4$
x_{3}	0	$-3 / 4$	1	0	$-1 / 4$	$1 / 4$	0	$1 / 4$
x_{4}	0	2	0	1	0	-1	1	97
$-z_{r p}$	0	0	0	0	1	1	1	0

Because $z_{r p}=0$ and because $\mathbf{v}=(0,0,0)$, we know we're done.

The fourth iteration: pivoting in (RP)

In this tableau, we can pivot on x_{3}, and it will replace y_{2} :

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
x_{1}	1	$-1 / 4$	0	0	$1 / 4$	$3 / 4$	0	$11 / 4$
x_{3}	0	$-3 / 4$	1	0	$-1 / 4$	$1 / 4$	0	$1 / 4$
x_{4}	0	2	0	1	0	-1	1	97
$-z_{r p}$	0	0	0	0	1	1	1	0

Because $z_{r p}=0$ and because $\mathbf{v}=(0,0,0)$, we know we're done.

- Our current $\mathbf{u}=\left(-\frac{1}{2}, \frac{5}{2}, 0\right)$ is the optimal solution to (D).

The fourth iteration: pivoting in (RP)

In this tableau, we can pivot on x_{3}, and it will replace y_{2} :

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
x_{1}	1	$-1 / 4$	0	0	$1 / 4$	$3 / 4$	0	$11 / 4$
x_{3}	0	$-3 / 4$	1	0	$-1 / 4$	$1 / 4$	0	$1 / 4$
x_{4}	0	2	0	1	0	-1	1	97
$-z_{r p}$	0	0	0	0	1	1	1	0

Because $z_{r p}=0$ and because $\mathbf{v}=(0,0,0)$, we know we're done.

- Our current $\mathbf{u}=\left(-\frac{1}{2}, \frac{5}{2}, 0\right)$ is the optimal solution to (D).
- From (RP), we read off $\mathbf{x}=\left(\frac{11}{4}, 0, \frac{1}{4}, 97\right)$, the optimal solution to (\mathbf{P}).

The fourth iteration: pivoting in (RP)

In this tableau, we can pivot on x_{3}, and it will replace y_{2} :

	x_{1}	x_{2}	x_{3}	x_{4}	y_{1}	y_{2}	y_{3}	
x_{1}	1	$-1 / 4$	0	0	$1 / 4$	$3 / 4$	0	$11 / 4$
x_{3}	0	$-3 / 4$	1	0	$-1 / 4$	$1 / 4$	0	$1 / 4$
x_{4}	0	2	0	1	0	-1	1	97
$-z_{r p}$	0	0	0	0	1	1	1	0

Because $z_{r p}=0$ and because $\mathbf{v}=(0,0,0)$, we know we're done.

- Our current $\mathbf{u}=\left(-\frac{1}{2}, \frac{5}{2}, 0\right)$ is the optimal solution to (D).
- From (RP), we read off $\mathbf{x}=\left(\frac{11}{4}, 0, \frac{1}{4}, 97\right)$, the optimal solution to (P).
(Ignoring u_{3} and $x_{4}, \mathbf{u}=\left(-\frac{1}{2}, \frac{5}{2}\right)$ and $\mathbf{x}=\left(\frac{11}{4}, 0, \frac{1}{4}\right)$ are optimal for the original (\mathbf{D}) and (\mathbf{P}).)

Comments on this method

- From the point of view of (RP), we've been solving one simplex tableau the whole time.

Comments on this method

- From the point of view of (RP), we've been solving one simplex tableau the whole time.
- The augmenting steps give us "hints" about which variables not to pivot on, in the form of frozen variables.

Comments on this method

- From the point of view of (RP), we've been solving one simplex tableau the whole time.
- The augmenting steps give us "hints" about which variables not to pivot on, in the form of frozen variables.
(In a perfect world, there is always only one variable to pivot on: the unfrozen variables are the ones that were already basic, and the one whose dual constraint just became tight. But sometimes this doesn't work out.)

Comments on this method

- From the point of view of (RP), we've been solving one simplex tableau the whole time.
- The augmenting steps give us "hints" about which variables not to pivot on, in the form of frozen variables.
(In a perfect world, there is always only one variable to pivot on: the unfrozen variables are the ones that were already basic, and the one whose dual constraint just became tight. But sometimes this doesn't work out.)
- This algorithm is well-suited for the revised simplex method.

If we use it, we don't have to keep around the frozen columns: we just compute columns of the tableau as we need them.

