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Finding an initial solution An example of primal-dual Observations

Starting the primal-dual algorithm

So far, we know how to do iterations of the primal-dual algorithm:
given a dual-feasible point u, improve it to a better point u. By
repeating this, we can solve the LP.

But how do we start the first iteration? How do we get the
starting u?

There are several possible answers:

Sometimes, a simple point like u = 0 is obviously feasible.

The only fully general answer is a two-phase method. If we do
this, we might as well not use the primal-dual algorithm.

In some cases, there is a trick we can do to create a dual
feasible solution.
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The trick

Consider the following primal-dual pair of linear programs:

(P)


minimize 2x1 − x2 + 4x3

subject to x1 + 2x2 − 3x3 = 2

x1 − x2 + x3 = 3

x1, x2, x3 ≥ 0

(D)


maximize 2u1 + 3u2

subject to u1 + u2 ≤ 2

2u1 − u2 ≤ −1

−3u1 + u2 ≤ 4

The trick relies on making a guess: that the optimal solution to
(P) has x1 + x2 + x3 ≤ 100.
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The trick, continued

The new (D) always has a feasible solution!

(D)



maximize
u∈R3

2u1 + 3u2 + 100u3

subject to u1 + u2 + u3 ≤ 2

2u1 − u2 + u3 ≤ −1

−3u1 + u2 + u3 ≤ 4

u3 ≤ 0

Set u1 = u2 = 0. (In general, set all variables to 0 except the
extra one, um+1.)

The inequalities simplify to u3 ≤ 2, u3 ≤ −1, u3 ≤ 4, u3 ≤ 0.
(In general, to many upper bounds on um+1.)

Set u3 = −1. (In general, set um+1 to the least upper bound.)
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An example of the primal-dual method

Let’s solve this example to see the primal-dual algorithm in action.

(D)



maximize
u∈R3

2u1 + 3u2 + 100u3

subject to u1 + u2 + u3 ≤ 2

2u1 − u2 + u3 ≤ −1

−3u1 + u2 + u3 ≤ 4

u3 ≤ 0

At u = (0, 0,−1), only the second constraint is tight.

In (RP), all variables except x2 will be frozen.

We will start (RP) with the basic feasible solution it always has:
where the y-variables are all basic.
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Writing down (RP)’s tableau

We look at (P) to write a starting tableau for (RP).

(P)



minimize 2x1 − x2 + 4x3

subject to x1 + 2x2 − 3x3 = 2

x1 − x2 + x3 = 3

x1 + x2 + x3 + x4 = 100

x1, x2, x3, x4 ≥ 0

Although only x2 will be present in (RP), we’ll include all columns,
and “freeze” the ones we don’t want.

x1 x2 x3 x4 y1 y2 y3
y1 1 2 −3 0 1 0 0 2
y2 1 −1 1 0 0 1 0 3
y3 1 1 1 1 0 0 1 100



Finding an initial solution An example of primal-dual Observations

Writing down (RP)’s tableau

We look at (P) to write a starting tableau for (RP).

(P)



minimize 2x1 − x2 + 4x3

subject to x1 + 2x2 − 3x3 = 2

x1 − x2 + x3 = 3

x1 + x2 + x3 + x4 = 100

x1, x2, x3, x4 ≥ 0

Although only x2 will be present in (RP), we’ll include all columns,
and “freeze” the ones we don’t want.

x1 x2 x3 x4 y1 y2 y3
y1 1 2 −3 0 1 0 0 2
y2 1 −1 1 0 0 1 0 3
y3 1 1 1 1 0 0 1 100

−zrp 0 0 0 0 1 1 1 0



Finding an initial solution An example of primal-dual Observations

Writing down (RP)’s tableau

We look at (P) to write a starting tableau for (RP).
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The first iteration: pivoting in (RP)

In this tableau, there’s only one pivoting step we can do: bring in
x2, remove y1.

x1 x2 x3 x4 y1 y2 y3
x2 1/2 1 −3/2 0 1/2 0 0 1
y2 3/2 0 −1/2 0 1/2 1 0 4
y3 1/2 0 5/2 1 −1/2 0 1 99

−zrp −2 0 −2 −1 1 0 0 −103

The optimal solution to (DRP) has

v = 1− rY = (1, 1, 1) − (0, 0, 0) = (0, 1, 1).

Next, we will augment u = (0, 0,−1) by adding a multiple of
v = (0, 1, 1) to it, while maintaining dual feasibility.
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The first iteration: augmenting u

Here are the dual constraints:

(D)



maximize 2u1 + 3u2 + 100u3

subject to u1 + u2 + u3 ≤ 2

2u1 − u2 + u3 ≤ −1

−3u1 + u2 + u3 ≤ 4

u3 ≤ 0

We are going from u = (0, 0,−1) to u + tv = (0, t, t − 1).

u1 + u2 + u3 ≤ 2 says 2t − 1 ≤ 2 or t ≤ 3
2 .

2u1 − u2 + u3 ≤ −1 says −1 ≤ −1. (It will remain tight but
never be violated.)

−3u1 + u2 + u3 ≤ 4 says 2t − 1 ≤ 4 or t ≤ 5
2 .

u3 ≤ 0 says t ≤ 1. (It becomes tight when t = 1.)
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Preparing the second iteration

Out of t ≤ 3
2 , t ≤ 5

2 , t ≤ 1, the limit t = 1 is the strictest, so we
go to the new point u + 1v = (0, 1, 0).

We saw that the second constraint of (D) remains tight, and at
t = 1, the fourth constraint becomes tight.

In our tableau for (RP), we unfreeze x4:

x1 x2 x3 x4 y1 y2 y3
x2 1/2 1 −3/2 0 1/2 0 0 1
y2 3/2 0 −1/2 0 1/2 1 0 4
y3 1/2 0 5/2 1 −1/2 0 1 99

−zrp −2 0 −2 −1 1 0 0 −103
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The second iteration: pivoting in (RP)

In this tableau, once we pivot to bring in x4 and remove y3, we’re
optimal again:

x1 x2 x3 x4 y1 y2 y3
x2 1/2 1 −3/2 0 1/2 0 0 1
y2 3/2 0 −1/2 0 1/2 1 0 4
x4 1/2 0 5/2 1 −1/2 0 1 99

−zrp −3/2 0 1/2 0 1/2 0 1 −4

The optimal solution to (DRP) has

v = 1− rY = (1, 1, 1) − (12 , 0, 1) = (12 , 1, 0).

Next, we will augment u = (0, 1, 0) by adding a multiple of
v = (12 , 1, 0) to it, while maintaining dual feasibility.
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v = (12 , 1, 0) to it, while maintaining dual feasibility.
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The second iteration: augmenting u

Here are the dual constraints:

(D)



maximize 2u1 + 3u2 + 100u3

subject to u1 + u2 + u3 ≤ 2

2u1 − u2 + u3 ≤ −1

−3u1 + u2 + u3 ≤ 4

u3 ≤ 0

We are going from u = (0, 1, 0) to u + tv = (12 t, 1 + t, 0).

u1 + u2 + u3 ≤ 2 says 1 + 3
2 t ≤ 2 or t ≤ 2

3 .

2u1 − u2 + u3 ≤ −1 says −1 ≤ −1. (It will remain tight but
never be violated.)

−3u1 + u2 + u3 ≤ 4 says 1 − 1
2 t ≤ 4 or t ≥ −6. (Not

relevant.)

u3 ≤ 0 says 0 ≤ 0. (It will remain tight but never be violated.)
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Preparing the third iteration

Our only limit on t is t ≤ 2
3 , so we go to the new point

u + 2
3v = (13 ,

5
3 , 0).

The second and fourth constraint of (D) remain tight; at t = 2
3 ,

the first constraint also becomes tight.

In our tableau for (RP), we unfreeze x1:

x1 x2 x3 x4 y1 y2 y3
x2 1/2 1 −3/2 0 1/2 0 0 1
y2 3/2 0 −1/2 0 1/2 1 0 4
x4 1/2 0 5/2 1 −1/2 0 1 99

−zrp −3/2 0 1/2 0 1/2 0 1 −4
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The third iteration: pivoting in (RP)

In this tableau, we can pivot on x1, and it will replace x2:

x1 x2 x3 x4 y1 y2 y3
x1 1 2 −3 0 1 0 0 2
y2 0 −3 4 0 −1 1 0 1
x4 0 −1 4 1 −1 0 1 98

−zrp 0 3 −4 0 2 0 1 −1

The optimal solution to (DRP) has

v = 1− rY = (1, 1, 1) − (2, 0, 1) = (−1, 1, 0).

Next, we will augment u = (13 ,
5
3 , 0) by adding a multiple of

v = (−1, 1, 0) to it, while maintaining dual feasibility.
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The third iteration: augmenting u

Here are the dual constraints:

(D)
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2u1 − u2 + u3 ≤ −1

−3u1 + u2 + u3 ≤ 4

u3 ≤ 0

We are going from u = (13 ,
5
3 , 0) to u + tv = (13 − t, 53 + t, 0).

u1 + u2 + u3 ≤ 2 says 2 ≤ 2. (It will remain tight but never be
violated.)

2u1 − u2 + u3 ≤ −1 says −1 − t ≤ −1. (For t > 0, it will
become slack.)

−3u1 + u2 + u3 ≤ 4 says 2
3 + 4t ≤ 4 or t ≤ 5

6 .

u3 ≤ 0 says 0 ≤ 0. (It will remain tight but never be violated.)
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Preparing the fourth iteration

Our only limit on t is t ≤ 5
6 , so we go to the new point

u + 5
6v = (−1

2 ,
5
2 , 0).

The first and fourth constraint of (D) remain tight; at t = 5
6 , the

third constraint also becomes tight. However, the second
constraint becomes slack.

In our tableau for (RP), we unfreeze x3 but freeze x2:

x1 x2 x3 x4 y1 y2 y3
x1 1 2 −3 0 1 0 0 2
y2 0 −3 4 0 −1 1 0 1
x4 0 −1 4 1 −1 0 1 98

−zrp 0 3 −4 0 2 0 1 −1
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The fourth iteration: pivoting in (RP)

In this tableau, we can pivot on x3, and it will replace y2:

x1 x2 x3 x4 y1 y2 y3
x1 1 −1/4 0 0 1/4 3/4 0 11/4
x3 0 −3/4 1 0 −1/4 1/4 0 1/4
x4 0 2 0 1 0 −1 1 97

−zrp 0 0 0 0 1 1 1 0

Because zrp = 0 and because v = (0, 0, 0), we know we’re done.

Our current u = (−1
2 ,

5
2 , 0) is the optimal solution to (D).

From (RP), we read off x = (114 , 0, 14 , 97), the optimal
solution to (P).

(Ignoring u3 and x4, u = (−1
2 ,

5
2) and x = (114 , 0, 14) are optimal for

the original (D) and (P).)



Finding an initial solution An example of primal-dual Observations

The fourth iteration: pivoting in (RP)

In this tableau, we can pivot on x3, and it will replace y2:

x1 x2 x3 x4 y1 y2 y3
x1 1 −1/4 0 0 1/4 3/4 0 11/4
x3 0 −3/4 1 0 −1/4 1/4 0 1/4
x4 0 2 0 1 0 −1 1 97

−zrp 0 0 0 0 1 1 1 0

Because zrp = 0 and because v = (0, 0, 0), we know we’re done.

Our current u = (−1
2 ,

5
2 , 0) is the optimal solution to (D).

From (RP), we read off x = (114 , 0, 14 , 97), the optimal
solution to (P).

(Ignoring u3 and x4, u = (−1
2 ,

5
2) and x = (114 , 0, 14) are optimal for

the original (D) and (P).)



Finding an initial solution An example of primal-dual Observations

The fourth iteration: pivoting in (RP)

In this tableau, we can pivot on x3, and it will replace y2:

x1 x2 x3 x4 y1 y2 y3
x1 1 −1/4 0 0 1/4 3/4 0 11/4
x3 0 −3/4 1 0 −1/4 1/4 0 1/4
x4 0 2 0 1 0 −1 1 97

−zrp 0 0 0 0 1 1 1 0

Because zrp = 0 and because v = (0, 0, 0), we know we’re done.

Our current u = (−1
2 ,

5
2 , 0) is the optimal solution to (D).

From (RP), we read off x = (114 , 0, 14 , 97), the optimal
solution to (P).

(Ignoring u3 and x4, u = (−1
2 ,

5
2) and x = (114 , 0, 14) are optimal for

the original (D) and (P).)



Finding an initial solution An example of primal-dual Observations

The fourth iteration: pivoting in (RP)

In this tableau, we can pivot on x3, and it will replace y2:

x1 x2 x3 x4 y1 y2 y3
x1 1 −1/4 0 0 1/4 3/4 0 11/4
x3 0 −3/4 1 0 −1/4 1/4 0 1/4
x4 0 2 0 1 0 −1 1 97

−zrp 0 0 0 0 1 1 1 0

Because zrp = 0 and because v = (0, 0, 0), we know we’re done.

Our current u = (−1
2 ,

5
2 , 0) is the optimal solution to (D).

From (RP), we read off x = (114 , 0, 14 , 97), the optimal
solution to (P).

(Ignoring u3 and x4, u = (−1
2 ,

5
2) and x = (114 , 0, 14) are optimal for

the original (D) and (P).)



Finding an initial solution An example of primal-dual Observations

The fourth iteration: pivoting in (RP)

In this tableau, we can pivot on x3, and it will replace y2:

x1 x2 x3 x4 y1 y2 y3
x1 1 −1/4 0 0 1/4 3/4 0 11/4
x3 0 −3/4 1 0 −1/4 1/4 0 1/4
x4 0 2 0 1 0 −1 1 97

−zrp 0 0 0 0 1 1 1 0

Because zrp = 0 and because v = (0, 0, 0), we know we’re done.

Our current u = (−1
2 ,

5
2 , 0) is the optimal solution to (D).

From (RP), we read off x = (114 , 0, 14 , 97), the optimal
solution to (P).

(Ignoring u3 and x4, u = (−1
2 ,

5
2) and x = (114 , 0, 14) are optimal for

the original (D) and (P).)



Finding an initial solution An example of primal-dual Observations

Comments on this method

From the point of view of (RP), we’ve been solving one
simplex tableau the whole time.

The augmenting steps give us “hints” about which variables
not to pivot on, in the form of frozen variables.

(In a perfect world, there is always only one variable to pivot
on: the unfrozen variables are the ones that were already
basic, and the one whose dual constraint just became tight.
But sometimes this doesn’t work out.)

This algorithm is well-suited for the revised simplex method.

If we use it, we don’t have to keep around the frozen columns:
we just compute columns of the tableau as we need them.
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