Primal-Dual Algorithm III Math 482, Lecture 31

Misha Lavrov

April 22, 2020

Starting the primal-dual algorithm

So far, we know how to do iterations of the primal-dual algorithm: given a dual-feasible point \mathbf{u} , improve it to a better point \mathbf{u} . By repeating this, we can solve the LP.

Starting the primal-dual algorithm

So far, we know how to do iterations of the primal-dual algorithm: given a dual-feasible point \mathbf{u} , improve it to a better point \mathbf{u} . By repeating this, we can solve the LP.

But how do we start the first iteration? How do we get the starting \mathbf{u} ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Starting the primal-dual algorithm

So far, we know how to do iterations of the primal-dual algorithm: given a dual-feasible point \mathbf{u} , improve it to a better point \mathbf{u} . By repeating this, we can solve the LP.

But how do we start the first iteration? How do we get the starting \mathbf{u} ?

There are several possible answers:

• Sometimes, a simple point like $\mathbf{u} = \mathbf{0}$ is obviously feasible.

Starting the primal-dual algorithm

So far, we know how to do iterations of the primal-dual algorithm: given a dual-feasible point \mathbf{u} , improve it to a better point \mathbf{u} . By repeating this, we can solve the LP.

But how do we start the first iteration? How do we get the starting \mathbf{u} ?

There are several possible answers:

- Sometimes, a simple point like $\mathbf{u} = \mathbf{0}$ is obviously feasible.
- The only fully general answer is a two-phase method. If we do this, we might as well not use the primal-dual algorithm.

Starting the primal-dual algorithm

So far, we know how to do iterations of the primal-dual algorithm: given a dual-feasible point \mathbf{u} , improve it to a better point \mathbf{u} . By repeating this, we can solve the LP.

But how do we start the first iteration? How do we get the starting \mathbf{u} ?

There are several possible answers:

- Sometimes, a simple point like $\mathbf{u} = \mathbf{0}$ is obviously feasible.
- The only fully general answer is a two-phase method. If we do this, we might as well not use the primal-dual algorithm.
- In some cases, there is a trick we can do to create a dual feasible solution.

Finding	an	initial	solution
000			

Consider the following primal-dual pair of linear programs:

$$(\mathbf{P}) \begin{cases} \text{minimize} & 2x_1 - x_2 + 4x_3\\ \text{subject to} & x_1 + 2x_2 - 3x_3 = 2\\ & x_1 - x_2 + x_3 = 3\\ & x_1, x_2, x_3 \ge 0 \end{cases}$$

$$(\mathbf{D}) \begin{cases} \text{maximize} & 2u_1 + 3u_2 \\ \text{subject to} & u_1 + u_2 \leq 2 \\ & 2u_1 - u_2 \leq -1 \\ & -3u_1 + u_2 \leq 4 \end{cases}$$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Finding	an	initial	solution
000			

Consider the following primal-dual pair of linear programs:

$$(\mathbf{P}) \begin{cases} \text{minimize} & 2x_1 - x_2 + 4x_3\\ \text{subject to} & x_1 + 2x_2 - 3x_3 = 2\\ & x_1 - x_2 + x_3 = 3\\ & x_1, x_2, x_3 \ge 0 \end{cases}$$

$$(\mathbf{D}) \begin{cases} \text{maximize} & 2u_1 + 3u_2 \\ \text{subject to} & u_1 + u_2 \leq 2 \\ & 2u_1 - u_2 \leq -1 \\ & -3u_1 + u_2 \leq 4 \end{cases}$$

The trick relies on making a guess: that the optimal solution to (P) has $x_1 + x_2 + x_3 \le 100$.

Consider the following primal-dual pair of linear programs:

$$(\mathbf{P}) \begin{cases} \text{minimize} & 2x_1 - x_2 + 4x_3\\ \text{subject to} & x_1 + 2x_2 - 3x_3 = 2\\ & x_1 - x_2 + x_3 = 3\\ & x_1 + x_2 + x_3 \le 100\\ & x_1, x_2, x_3 \ge 0 \end{cases}$$
$$(\mathbf{D}) \begin{cases} \text{maximize} & 2u_1 + 3u_2\\ \text{subject to} & u_1 + u_2 \le 2\\ & 2u_1 - u_2 \le -1\\ & -3u_1 + u_2 \le 4 \end{cases}$$

The trick relies on making a guess: that the optimal solution to (P) has $x_1 + x_2 + x_3 \le 100$.

・ロト・日本・モト・モト・モー めんぐ

The trick

Consider the following primal-dual pair of linear programs:

	(min	imize	$2x_1 - $	$x_2 + 4$	4 <i>x</i> 3	
	subj	ect to	$x_1 +$	$2x_2 - 3$	3 <i>x</i> 3	= 2
(P)	{		<i>x</i> ₁ –	$x_2 +$	<i>x</i> 3	= 3
			$x_1 +$	<i>x</i> ₂ +	$x_3 + x_4$	₄ = 100
	l		$x_1, x_2,$	<i>x</i> ₃ , <i>x</i> ₄ ≥	≥ 0	
		(maxin	nize	2 <i>u</i> ₁ +	3 <i>u</i> 2	
(1	(ח)	subjec	t to	$u_1 + $	$u_2 \leq 2$	2
	(D) \			$2u_1 - $	$u_2 \leq \frac{1}{2}$	-1
		l	-	$-3u_1 +$	$u_2 \leq u_2$	4

The trick relies on making a guess: that the optimal solution to (P) has $x_1 + x_2 + x_3 \le 100$.

Consider the following primal-dual pair of linear programs:

	minimize	$2x_1 - x_2 + 4x_3$	
	subject to	$x_1 + 2x_2 - 3x_3$	= 2
(P) <		$x_1 - x_2 + x_3$	= 3
		$x_1 + x_2 + x_3 $	$+ x_4 = 100$
	l	$x_1, x_2, x_3, \underline{x_4} \ge 0$	
	(maximize	$2u_1 + 3u_2 + 1$	00 <i>u</i> 3
	subject to	$u_1 + u_2 +$	<u>из</u> ≤ 2
(D)	{	$2u_1 - u_2 +$	$u_3 \leq -1$
		$-3u_1 + u_2 +$	<u>⊿</u> 3 ≤ 4
	l		$u_3 \leq 0$

The trick relies on making a guess: that the optimal solution to (P) has $x_1 + x_2 + x_3 \le 100$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The trick, continued

The new (\mathbf{D}) always has a feasible solution!

$$(\mathbf{D}) \begin{cases} \underset{\mathbf{u} \in \mathbb{R}^{3}}{\text{maximize}} & 2u_{1} + 3u_{2} + 100u_{3} \\ \\ \text{subject to} & u_{1} + u_{2} + u_{3} \leq 2 \\ & 2u_{1} - u_{2} + u_{3} \leq -1 \\ & -3u_{1} + u_{2} + u_{3} \leq 4 \\ & & u_{3} \leq 0 \end{cases}$$

The trick, continued

The new (\mathbf{D}) always has a feasible solution!

 $(\mathbf{D}) \begin{cases} \underset{u \in \mathbb{R}^{3}}{\text{maximize}} & 2u_{1} + 3u_{2} + 100u_{3} \\ \\ \text{subject to} & u_{1} + u_{2} + u_{3} \leq 2 \\ & 2u_{1} - u_{2} + u_{3} \leq -1 \\ & -3u_{1} + u_{2} + u_{3} \leq 4 \\ & u_{3} \leq 0 \end{cases}$

• Set $u_1 = u_2 = 0$. (In general, set all variables to 0 except the extra one, u_{m+1} .)

- The inequalities simplify to $u_3 \le 2$, $u_3 \le -1$, $u_3 \le 4$, $u_3 \le 0$. (In general, to many upper bounds on u_{m+1} .)
- Set $u_3 = -1$. (In general, set u_{m+1} to the least upper bound.)

An example of the primal-dual method

Let's solve this example to see the primal-dual algorithm in action.

An example of the primal-dual method

Let's solve this example to see the primal-dual algorithm in action.

$$(\mathbf{D}) \begin{cases} \max_{\mathbf{u} \in \mathbb{R}^3} & 2u_1 + 3u_2 + 100u_3 \\ \text{subject to} & u_1 + u_2 + u_3 \le 2 \\ & 2u_1 - u_2 + u_3 \le -1 \\ & -3u_1 + u_2 + u_3 \le 4 \\ & & u_3 \le 0 \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

An example of the primal-dual method

Let's solve this example to see the primal-dual algorithm in action.

$$(\mathbf{D}) \begin{cases} \underset{u \in \mathbb{R}^{3}}{\text{maximize}} & 2u_{1} + 3u_{2} + 100u_{3} \\ \text{subject to} & u_{1} + u_{2} + u_{3} \leq 2 \\ & 2u_{1} - u_{2} + u_{3} \leq -1 \\ & -3u_{1} + u_{2} + u_{3} \leq 4 \\ & & u_{3} \leq 0 \end{cases}$$

At $\mathbf{u} = (0, 0, -1)$, only the second constraint is tight.

An example of the primal-dual method

Let's solve this example to see the primal-dual algorithm in action.

$$(\mathbf{D}) \begin{cases} \underset{u \in \mathbb{R}^{3}}{\text{maximize}} & 2u_{1} + 3u_{2} + 100u_{3} \\ \text{subject to} & u_{1} + u_{2} + u_{3} \leq 2 \\ & 2u_{1} - u_{2} + u_{3} \leq -1 \\ & -3u_{1} + u_{2} + u_{3} \leq 4 \\ & & u_{3} \leq 0 \end{cases}$$

At $\mathbf{u} = (0, 0, -1)$, only the second constraint is tight. In (**RP**), all variables except x_2 will be frozen.

・ロト・西ト・ヨト・日下・ 白・ シック

An example of the primal-dual method

Let's solve this example to see the primal-dual algorithm in action.

$$(\mathbf{D}) \begin{cases} \underset{\mathbf{u} \in \mathbb{R}^{3}}{\text{maximize}} & 2u_{1} + 3u_{2} + 100u_{3} \\ \text{subject to} & u_{1} + u_{2} + u_{3} \leq 2 \\ & 2u_{1} - u_{2} + u_{3} \leq -1 \\ & -3u_{1} + u_{2} + u_{3} \leq 4 \\ & & u_{3} \leq 0 \end{cases}$$

At $\mathbf{u} = (0, 0, -1)$, only the second constraint is tight.

In (**RP**), all variables except x_2 will be frozen.

We will start (\mathbf{RP}) with the basic feasible solution it always has: where the **y**-variables are all basic.

Writing down (**RP**)'s tableau

We look at (\mathbf{P}) to write a starting tableau for (\mathbf{RP}) .

$$(\mathbf{P}) \begin{cases} \text{minimize} & 2x_1 - x_2 + 4x_3\\ \text{subject to} & x_1 + 2x_2 - 3x_3 &= 2\\ & x_1 - x_2 + x_3 &= 3\\ & x_1 + x_2 + x_3 + x_4 = 100\\ & x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

Although only x_2 will be present in (**RP**), we'll include all columns, and "freeze" the ones we don't want.

Writing down (**RP**)'s tableau

We look at (\mathbf{P}) to write a starting tableau for (\mathbf{RP}) .

$$(\mathbf{P}) \begin{cases} \text{minimize} & 2x_1 - x_2 + 4x_3\\ \text{subject to} & x_1 + 2x_2 - 3x_3 &= 2\\ & x_1 - x_2 + x_3 &= 3\\ & x_1 + x_2 + x_3 + x_4 = 100\\ & x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

Although only x_2 will be present in (**RP**), we'll include all columns, and "freeze" the ones we don't want.

	x 1	<i>x</i> ₂	x 3	x 4	y_1	<i>y</i> ₂	<i>y</i> ₃	
<i>y</i> ₁	1	2	-3	0	1	0	0	2
<i>y</i> ₂	1	-1	1	0	0	1	0	3
<i>y</i> 3	1	1	1	1	0	0	1	100
-Z _{rp}	0	0	0	0	1	1	1	0

Writing down (**RP**)'s tableau

We look at (\mathbf{P}) to write a starting tableau for (\mathbf{RP}) .

$$(\mathbf{P}) \begin{cases} \text{minimize} & 2x_1 - x_2 + 4x_3\\ \text{subject to} & x_1 + 2x_2 - 3x_3 &= 2\\ & x_1 - x_2 + x_3 &= 3\\ & x_1 + x_2 + x_3 + x_4 = 100\\ & x_1, x_2, x_3, x_4 \ge 0 \end{cases}$$

Although only x_2 will be present in (**RP**), we'll include all columns, and "freeze" the ones we don't want.

	x 1	<i>x</i> ₂	x 3	x 4	y_1	<i>y</i> ₂	<i>y</i> 3	
<i>y</i> ₁	1	2	-3	0	1	0	0	2
<i>y</i> ₂	1	-1	1	0	0	1	0	3
<i>Y</i> 3	1	1	1	1	0	0	1	100
$-z_{rp}$	-3	-2	1	-1	0	0	0	-105

The first iteration: pivoting in **(RP)**

In this tableau, there's only one pivoting step we can do: bring in x_2 , remove y_1 .

	x 1	<i>x</i> ₂	x 3	x 4	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	
<i>x</i> ₂	1/2	1	-3/2	0	$1/_{2}$	0	0	1
<i>y</i> ₂	3/2	0	-1/2	0	1/2	1	0	4
<i>y</i> 3	1/2	0	5/2	1	-1/2	0	1	99
-Z _{rp}	-2	0	-2	-1	1	0	0	-103

The first iteration: pivoting in **(RP)**

In this tableau, there's only one pivoting step we can do: bring in x_2 , remove y_1 .

	x 1	<i>x</i> ₂	x 3	x 4	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	
<i>x</i> ₂	1/2	1	-3/2	0	$1/_{2}$	0	0	1
<i>y</i> ₂	3/2	0	-1/2	0	1/2	1	0	4
<i>y</i> 3	1/2	0	5/2	1	-1/2	0	1	99
$-z_{rp}$	-2	0	-2	-1	1	0	0	-103

The optimal solution to (DRP) has

$$\mathbf{v} = \mathbf{1} - \mathbf{r}_{\mathcal{Y}} = (1, 1, 1) - (0, 0, 0) = (0, 1, 1).$$

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

The first iteration: pivoting in **(RP)**

In this tableau, there's only one pivoting step we can do: bring in x_2 , remove y_1 .

	x 1	<i>x</i> ₂	x 3	x 4	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	
<i>x</i> ₂	1/2	1	-3/2	0	$1/_{2}$	0	0	1
<i>y</i> ₂	3/2	0	-1/2	0	1/2	1	0	4
<i>y</i> 3	1/2	0	5/2	1	-1/2	0	1	99
$-Z_{rp}$	-2	0	-2	-1	1	0	0	-103

The optimal solution to (DRP) has

$$\mathbf{v} = \mathbf{1} - \mathbf{r}_{\mathcal{Y}} = (1, 1, 1) - (0, 0, 0) = (0, 1, 1).$$

Next, we will augment $\mathbf{u} = (0, 0, -1)$ by adding a multiple of $\mathbf{v} = (0, 1, 1)$ to it, while maintaining dual feasibility.

The first iteration: augmenting **u**

Here are the dual constraints:

	maximize	$2u_1 + 3u_2 + 100u_3$					
	subject to	$u_1 + $	<i>u</i> ₂ +	$u_3 \leq 2$			
(D) <)	2 <i>u</i> ₁ -	<i>u</i> ₂ +	$u_3 \leq -1$			
		$-3u_1 + $	<i>u</i> ₂ +	$u_3 \leq 4$			
	l			$u_3 \leq 0$			

The first iteration: augmenting **u**

Here are the dual constraints:

	maximize	$2u_1 + 3u_2 + 100u_3$					
	subject to	$u_1 + $	<i>u</i> ₂ +	$u_3 \leq 2$			
(D) <		$2u_1 - $	<i>u</i> ₂ +	$u_3 \leq -1$			
		$-3u_1 + $	<i>u</i> ₂ +	$u_3 \leq 4$			
	l			$u_3 \leq 0$			

We are going from $\mathbf{u} = (0, 0, -1)$ to $\mathbf{u} + t\mathbf{v} = (0, t, t - 1)$.

• $u_1 + u_2 + u_3 \le 2$ says $2t - 1 \le 2$ or $t \le \frac{3}{2}$.

The first iteration: augmenting **u**

Here are the dual constraints:

	maximize	$2u_1 + 3u_2 + 100u_3$					
	subject to	$u_1 + $	<i>u</i> ₂ +	$u_3 \leq 2$			
(D) <)	$2u_1 - $	<i>u</i> ₂ +	$u_3 \leq -1$			
		$-3u_1 + $	<i>u</i> ₂ +	$u_3 \leq 4$			
	l			<i>u</i> ₃ ≤ 0			

- $u_1 + u_2 + u_3 \le 2$ says $2t 1 \le 2$ or $t \le \frac{3}{2}$.
- $2u_1 u_2 + u_3 \le -1$ says $-1 \le -1$. (It will remain tight but never be violated.)

The first iteration: augmenting **u**

Here are the dual constraints:

	maximize	$2u_1 + 3$	$3u_2 + 10$	0 <i>u</i> 3
	subject to	$u_1 + $	<i>u</i> ₂ +	$u_3 \leq 2$
(D) <		$2u_1 - $	<i>u</i> ₂ +	$u_3 \leq -1$
		$-3u_1 + $	<i>u</i> ₂ +	$u_3 \leq 4$
	l			<i>u</i> ₃ ≤ 0

- $u_1 + u_2 + u_3 \le 2$ says $2t 1 \le 2$ or $t \le \frac{3}{2}$.
- $2u_1 u_2 + u_3 \le -1$ says $-1 \le -1$. (It will remain tight but never be violated.)

•
$$-3u_1 + u_2 + u_3 \le 4$$
 says $2t - 1 \le 4$ or $t \le \frac{5}{2}$.

The first iteration: augmenting **u**

Here are the dual constraints:

	maximize	$2u_1 + 3$	$3u_2 + 10$	0 <i>u</i> 3
	subject to	$u_1 + $	<i>u</i> ₂ +	$u_3 \leq 2$
(D) <		2 <i>u</i> ₁ -	<i>u</i> ₂ +	$u_3 \leq -1$
		$-3u_1 + $	<i>u</i> ₂ +	<i>u</i> ₃ ≤ 4
				<i>u</i> ₃ ≤ 0

- $u_1 + u_2 + u_3 \le 2$ says $2t 1 \le 2$ or $t \le \frac{3}{2}$.
- $2u_1 u_2 + u_3 \le -1$ says $-1 \le -1$. (It will remain tight but never be violated.)
- $-3u_1 + u_2 + u_3 \le 4$ says $2t 1 \le 4$ or $t \le \frac{5}{2}$.
- $u_3 \leq 0$ says $t \leq 1$. (It becomes tight when t = 1.)

Preparing the second iteration

Out of $t \leq \frac{3}{2}$, $t \leq \frac{5}{2}$, $t \leq 1$, the limit t = 1 is the strictest, so we go to the new point $\mathbf{u} + 1\mathbf{v} = (0, 1, 0)$.

Preparing the second iteration

Out of $t \leq \frac{3}{2}$, $t \leq \frac{5}{2}$, $t \leq 1$, the limit t = 1 is the strictest, so we go to the new point $\mathbf{u} + 1\mathbf{v} = (0, 1, 0)$.

We saw that the second constraint of (**D**) remains tight, and at t = 1, the fourth constraint becomes tight.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Preparing the second iteration

Out of $t \leq \frac{3}{2}$, $t \leq \frac{5}{2}$, $t \leq 1$, the limit t = 1 is the strictest, so we go to the new point $\mathbf{u} + 1\mathbf{v} = (0, 1, 0)$.

We saw that the second constraint of (**D**) remains tight, and at t = 1, the fourth constraint becomes tight.

In our tableau for (**RP**), we unfreeze x_4 :

	x 1	<i>x</i> ₂	x 3	<i>x</i> 4	<i>Y</i> 1	<i>y</i> ₂	<i>y</i> 3	
<i>x</i> ₂	1/2	1	-3/2	0	1/2	0	0	1
<i>y</i> 2	3/2	0	-1/2	0	1/2	1	0	4
<i>y</i> 3	1/2	0	5/2	1	-1/2	0	1	99
$-Z_{rp}$	-2	0	-2	$^{-1}$	1	0	0	-103

The second iteration: pivoting in (**RP**)

In this tableau, once we pivot to bring in x_4 and remove y_3 , we're optimal again:

	x 1	<i>x</i> ₂	x 3	<i>x</i> 4	<i>Y</i> 1	<i>y</i> ₂	<i>y</i> 3	
<i>x</i> ₂	1/2	1	-3/2	0	1/2	0	0	1
<i>y</i> ₂	3/2	0	-1/2	0	1/2	1	0	4
<i>X</i> 4	1/2	0	5/2	1	-1/2	0	1	99
-Z _{rp}	-3/2	0	1/2	0	1/2	0	1	-4

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

The second iteration: pivoting in (**RP**)

In this tableau, once we pivot to bring in x_4 and remove y_3 , we're optimal again:

	x 1	<i>x</i> ₂	x 3	<i>x</i> 4	<i>Y</i> 1	<i>y</i> ₂	<i>y</i> 3	
<i>x</i> ₂	1/2	1	-3/2	0	1/2	0	0	1
<i>y</i> ₂	3/2	0	-1/2	0	1/2	1	0	4
<i>X</i> 4	1/2	0	5/2	1	-1/2	0	1	99
-Z _{rp}	-3/2	0	1/2	0	1/2	0	1	-4

The optimal solution to (DRP) has

$$\mathbf{v} = \mathbf{1} - \mathbf{r}_{\mathcal{Y}} = (1, 1, 1) - (\frac{1}{2}, 0, 1) = (\frac{1}{2}, 1, 0).$$

The second iteration: pivoting in (**RP**)

In this tableau, once we pivot to bring in x_4 and remove y_3 , we're optimal again:

	x 1	<i>x</i> ₂	x 3	<i>X</i> 4	<i>Y</i> 1	<i>Y</i> 2	<i>y</i> 3	
<i>x</i> ₂	1/2	1	-3/2	0	1/2	0	0	1
<i>y</i> ₂	3/2	0	-1/2	0	1/2	1	0	4
<i>x</i> 4	1/2	0	5/2	1	-1/2	0	1	99
$-z_{rp}$	-3/2	0	1/2	0	1/2	0	1	-4

The optimal solution to (DRP) has

$$\mathbf{v} = \mathbf{1} - \mathbf{r}_{\mathcal{Y}} = (1, 1, 1) - (\frac{1}{2}, 0, 1) = (\frac{1}{2}, 1, 0).$$

Next, we will augment $\mathbf{u} = (0, 1, 0)$ by adding a multiple of $\mathbf{v} = (\frac{1}{2}, 1, 0)$ to it, while maintaining dual feasibility.

The second iteration: augmenting **u**

Here are the dual constraints:

$$(\mathbf{D}) \begin{cases} \text{maximize} & 2u_1 + 3u_2 + 100u_3 \\ \text{subject to} & u_1 + u_2 + u_3 \leq 2 \\ & 2u_1 - u_2 + u_3 \leq -1 \\ & -3u_1 + u_2 + u_3 \leq 4 \\ & & u_3 \leq 0 \end{cases}$$

We are going from $\mathbf{u} = (0, 1, 0)$ to $\mathbf{u} + t\mathbf{v} = (\frac{1}{2}t, 1 + t, 0)$.

The second iteration: augmenting **u**

Here are the dual constraints:

$$(\mathbf{D}) \begin{cases} \text{maximize} & 2u_1 + 3u_2 + 100u_3 \\ \text{subject to} & u_1 + u_2 + u_3 \le 2 \\ & 2u_1 - u_2 + u_3 \le -1 \\ & -3u_1 + u_2 + u_3 \le 4 \\ & & u_3 \le 0 \end{cases}$$

We are going from $\mathbf{u} = (0, 1, 0)$ to $\mathbf{u} + t\mathbf{v} = (\frac{1}{2}t, 1 + t, 0)$. • $u_1 + u_2 + u_3 \le 2$ says $1 + \frac{3}{2}t \le 2$ or $t \le \frac{2}{3}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

The second iteration: augmenting **u**

Here are the dual constraints:

$$(\mathbf{D}) \begin{cases} \text{maximize} & 2u_1 + 3u_2 + 100u_3 \\ \text{subject to} & u_1 + u_2 + u_3 \leq 2 \\ & 2u_1 - u_2 + u_3 \leq -1 \\ & -3u_1 + u_2 + u_3 \leq 4 \\ & & u_3 \leq 0 \end{cases}$$

We are going from $\mathbf{u} = (0, 1, 0)$ to $\mathbf{u} + t\mathbf{v} = (\frac{1}{2}t, 1 + t, 0)$.

- $u_1 + u_2 + u_3 \le 2$ says $1 + \frac{3}{2}t \le 2$ or $t \le \frac{2}{3}$.
- $2u_1 u_2 + u_3 \le -1$ says $-1 \le -1$. (It will remain tight but never be violated.)

The second iteration: augmenting **u**

Here are the dual constraints:

$$(\mathbf{D}) \begin{cases} \text{maximize} & 2u_1 + 3u_2 + 100u_3 \\ \text{subject to} & u_1 + u_2 + u_3 \leq 2 \\ & 2u_1 - u_2 + u_3 \leq -1 \\ & -3u_1 + u_2 + u_3 \leq 4 \\ & & u_3 \leq 0 \end{cases}$$

We are going from $\mathbf{u} = (0, 1, 0)$ to $\mathbf{u} + t\mathbf{v} = (\frac{1}{2}t, 1 + t, 0)$.

- $u_1 + u_2 + u_3 \le 2$ says $1 + \frac{3}{2}t \le 2$ or $t \le \frac{2}{3}$.
- $2u_1 u_2 + u_3 \le -1$ says $-1 \le -1$. (It will remain tight but never be violated.)

•
$$-3u_1 + u_2 + u_3 \le 4$$
 says $1 - \frac{1}{2}t \le 4$ or $t \ge -6$. (Not relevant.)

The second iteration: augmenting **u**

Here are the dual constraints:

$$(\mathbf{D}) \begin{cases} \text{maximize} & 2u_1 + 3u_2 + 100u_3 \\ \text{subject to} & u_1 + u_2 + u_3 \leq 2 \\ & 2u_1 - u_2 + u_3 \leq -1 \\ & -3u_1 + u_2 + u_3 \leq 4 \\ & & u_3 \leq 0 \end{cases}$$

We are going from $\mathbf{u} = (0, 1, 0)$ to $\mathbf{u} + t\mathbf{v} = (\frac{1}{2}t, 1 + t, 0)$.

- $u_1 + u_2 + u_3 \le 2$ says $1 + \frac{3}{2}t \le 2$ or $t \le \frac{2}{3}$.
- $2u_1 u_2 + u_3 \le -1$ says $-1 \le -1$. (It will remain tight but never be violated.)

•
$$-3u_1 + u_2 + u_3 \le 4$$
 says $1 - \frac{1}{2}t \le 4$ or $t \ge -6$. (Not relevant.)

• $u_3 \leq 0$ says $0 \leq 0$. (It will remain tight but never be violated.)

Preparing the third iteration

Our only limit on t is $t \le \frac{2}{3}$, so we go to the new point $\mathbf{u} + \frac{2}{3}\mathbf{v} = (\frac{1}{3}, \frac{5}{3}, 0).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Preparing the third iteration

Our only limit on t is $t \le \frac{2}{3}$, so we go to the new point $\mathbf{u} + \frac{2}{3}\mathbf{v} = (\frac{1}{3}, \frac{5}{3}, 0).$

The second and fourth constraint of (**D**) remain tight; at $t = \frac{2}{3}$, the first constraint also becomes tight.

Preparing the third iteration

Our only limit on t is $t \le \frac{2}{3}$, so we go to the new point $\mathbf{u} + \frac{2}{3}\mathbf{v} = (\frac{1}{3}, \frac{5}{3}, 0).$

The second and fourth constraint of (**D**) remain tight; at $t = \frac{2}{3}$, the first constraint also becomes tight.

In our tableau for (**RP**), we unfreeze x_1 :

	<i>x</i> ₁	<i>x</i> ₂	x 3	<i>x</i> 4	<i>Y</i> 1	<i>y</i> ₂	<i>y</i> 3	
<i>x</i> ₂	1/2	1	-3/2	0	1/2	0	0	1
<i>y</i> 2	3/2	0	-1/2	0	1/2	1	0	4
<i>X</i> 4	1/2	0	5/2	1	-1/2	0	1	99
$-z_{rp}$	-3/2	0	1/2	0	1/2	0	1	-4

The third iteration: pivoting in **(RP)**

In this tableau, we can pivot on x_1 , and it will replace x_2 :

	x_1	<i>x</i> ₂	<i>x</i> 3	<i>x</i> 4	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	
<i>x</i> ₁	1	2	-3	0	1	0	0	2
<i>y</i> ₂	0	-3	4	0	-1	1	0	1
<i>x</i> 4	0	-1	4	1	-1	0	1	98
$-z_{rp}$	0	3	-4	0	2	0	1	-1

The third iteration: pivoting in (**RP**)

In this tableau, we can pivot on x_1 , and it will replace x_2 :

	x_1	<i>x</i> ₂	x 3	<i>x</i> ₄	y_1	<i>y</i> ₂	<i>y</i> ₃	
<i>x</i> ₁	1	2	-3	0	1	0	0	2
<i>y</i> ₂	0	-3	4	0	-1	1	0	1
<i>x</i> 4	0	-1	4	1	-1	0	1	98
$-z_{rp}$	0	3	-4	0	2	0	1	-1

The optimal solution to (DRP) has

$$\mathbf{v} = \mathbf{1} - \mathbf{r}_{\mathcal{Y}} = (1, 1, 1) - (2, 0, 1) = (-1, 1, 0).$$

The third iteration: pivoting in **(RP)**

In this tableau, we can pivot on x_1 , and it will replace x_2 :

	x_1	<i>x</i> ₂	x 3	<i>x</i> ₄	y_1	<i>y</i> ₂	<i>y</i> ₃	
x_1	1	2	-3	0	1	0	0	2
<i>y</i> 2	0	-3	4	0	-1	1	0	1
<i>x</i> 4	0	-1	4	1	-1	0	1	98
$-Z_{rp}$	0	3	-4	0	2	0	1	-1

The optimal solution to (DRP) has

$$\mathbf{v} = \mathbf{1} - \mathbf{r}_{\mathcal{Y}} = (1, 1, 1) - (2, 0, 1) = (-1, 1, 0).$$

Next, we will augment $\mathbf{u} = (\frac{1}{3}, \frac{5}{3}, 0)$ by adding a multiple of $\mathbf{v} = (-1, 1, 0)$ to it, while maintaining dual feasibility.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

The third iteration: augmenting **u**

Here are the dual constraints:

$$(\mathbf{D}) \begin{cases} \text{maximize} & 2u_1 + 3u_2 + 100u_3 \\ \text{subject to} & u_1 + u_2 + u_3 \leq 2 \\ & 2u_1 - u_2 + u_3 \leq -1 \\ & -3u_1 + u_2 + u_3 \leq 4 \\ & & u_3 \leq 0 \end{cases}$$

The third iteration: augmenting **u**

Here are the dual constraints:

$$(\mathbf{D}) \begin{cases} \text{maximize} & 2u_1 + 3u_2 + 100u_3 \\ \text{subject to} & u_1 + u_2 + u_3 \le 2 \\ & 2u_1 - u_2 + u_3 \le -1 \\ & -3u_1 + u_2 + u_3 \le 4 \\ & & u_3 \le 0 \end{cases}$$

We are going from $\mathbf{u} = (\frac{1}{3}, \frac{5}{3}, 0)$ to $\mathbf{u} + t\mathbf{v} = (\frac{1}{3} - t, \frac{5}{3} + t, 0)$.

u₁ + u₂ + u₃ ≤ 2 says 2 ≤ 2. (It will remain tight but never be violated.)

The third iteration: augmenting **u**

Here are the dual constraints:

$$(\mathbf{D}) \begin{cases} \text{maximize} & 2u_1 + 3u_2 + 100u_3 \\ \text{subject to} & u_1 + u_2 + u_3 \le 2 \\ & 2u_1 - u_2 + u_3 \le -1 \\ & -3u_1 + u_2 + u_3 \le 4 \\ & & u_3 \le 0 \end{cases}$$

- $u_1 + u_2 + u_3 \le 2$ says $2 \le 2$. (It will remain tight but never be violated.)
- 2u₁ − u₂ + u₃ ≤ −1 says −1 − t ≤ −1. (For t > 0, it will become slack.)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

The third iteration: augmenting **u**

Here are the dual constraints:

$$(\mathbf{D}) \begin{cases} \text{maximize} & 2u_1 + 3u_2 + 100u_3 \\ \text{subject to} & u_1 + u_2 + u_3 \le 2 \\ & 2u_1 - u_2 + u_3 \le -1 \\ & -3u_1 + u_2 + u_3 \le 4 \\ & & u_3 \le 0 \end{cases}$$

- $u_1 + u_2 + u_3 \le 2$ says $2 \le 2$. (It will remain tight but never be violated.)
- 2u₁ − u₂ + u₃ ≤ −1 says −1 − t ≤ −1. (For t > 0, it will become slack.)
- $-3u_1 + u_2 + u_3 \le 4$ says $\frac{2}{3} + 4t \le 4$ or $t \le \frac{5}{6}$.

The third iteration: augmenting **u**

Here are the dual constraints:

$$(\mathbf{D}) \begin{cases} \text{maximize} & 2u_1 + 3u_2 + 100u_3 \\ \text{subject to} & u_1 + u_2 + u_3 \le 2 \\ & 2u_1 - u_2 + u_3 \le -1 \\ & -3u_1 + u_2 + u_3 \le 4 \\ & & u_3 \le 0 \end{cases}$$

- $u_1 + u_2 + u_3 \le 2$ says $2 \le 2$. (It will remain tight but never be violated.)
- 2u₁ − u₂ + u₃ ≤ −1 says −1 − t ≤ −1. (For t > 0, it will become slack.)
- $-3u_1 + u_2 + u_3 \le 4$ says $\frac{2}{3} + 4t \le 4$ or $t \le \frac{5}{6}$.
- $u_3 \leq 0$ says $0 \leq 0$. (It will remain tight but never be violated.)

Preparing the fourth iteration

Our only limit on t is $t \le \frac{5}{6}$, so we go to the new point $\mathbf{u} + \frac{5}{6}\mathbf{v} = (-\frac{1}{2}, \frac{5}{2}, 0).$

Preparing the fourth iteration

Our only limit on t is $t \le \frac{5}{6}$, so we go to the new point $\mathbf{u} + \frac{5}{6}\mathbf{v} = (-\frac{1}{2}, \frac{5}{2}, 0).$

The first and fourth constraint of (**D**) remain tight; at $t = \frac{5}{6}$, the third constraint also becomes tight. However, the second constraint becomes slack.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Preparing the fourth iteration

Our only limit on t is $t \le \frac{5}{6}$, so we go to the new point $\mathbf{u} + \frac{5}{6}\mathbf{v} = (-\frac{1}{2}, \frac{5}{2}, 0).$

The first and fourth constraint of (**D**) remain tight; at $t = \frac{5}{6}$, the third constraint also becomes tight. However, the second constraint becomes slack.

In our tableau for (**RP**), we unfreeze x_3 but freeze x_2 :

	x_1	x 2	<i>x</i> 3	<i>X</i> 4	<i>y</i> 1	<i>Y</i> 2	<i>y</i> 3	
<i>x</i> ₁	1	2	-3	0	1	0	0	2
<i>y</i> ₂	0	-3	4	0	-1	1	0	1
<i>x</i> 4	0	-1	4	1	-1	0	1	98
$-z_{rp}$	0	3	-4	0	2	0	1	-1

・ロト・日本・ヨト・ヨト・日・ つへぐ

The fourth iteration: pivoting in (**RP**)

In this tableau, we can pivot on x_3 , and it will replace y_2 :

	x_1	x ₂	<i>x</i> 3	<i>x</i> ₄	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	
<i>x</i> ₁	1	-1/4	0	0	1/4	3/4	0	11/4
<i>x</i> 3	0	_3/4	1	0	-1/4	1/4	0	1/4
<i>x</i> 4	0	2	0	1	0	-1	1	97
-Z _{rp}	0	0	0	0	1	1	1	0

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへぐ

The fourth iteration: pivoting in **(RP)**

In this tableau, we can pivot on x_3 , and it will replace y_2 :

	x_1	x 2	<i>x</i> 3	<i>x</i> ₄	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	
<i>x</i> ₁	1	-1/4	0	0	1/4	3/4	0	11/4
<i>x</i> 3	0	_3/4	1	0	-1/4	1/4	0	1/4
<i>x</i> 4	0	2	0	1	0	-1	1	97
$-z_{rp}$	0	0	0	0	1	1	1	0

Because $z_{rp} = 0$ and because $\mathbf{v} = (0, 0, 0)$, we know we're done.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

The fourth iteration: pivoting in **(RP)**

In this tableau, we can pivot on x_3 , and it will replace y_2 :

	x_1	x 2	<i>x</i> 3	<i>x</i> ₄	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	
<i>x</i> ₁	1	-1/4	0	0	1/4	3/4	0	11/4
<i>x</i> 3	0	_3/4	1	0	-1/4	$1/_{4}$	0	1/4
<i>x</i> 4	0	2	0	1	0	-1	1	97
$-z_{rp}$	0	0	0	0	1	1	1	0

Because $z_{rp} = 0$ and because $\mathbf{v} = (0, 0, 0)$, we know we're done.

• Our current $\mathbf{u} = (-\frac{1}{2}, \frac{5}{2}, 0)$ is the optimal solution to (D).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

The fourth iteration: pivoting in **(RP)**

In this tableau, we can pivot on x_3 , and it will replace y_2 :

	x_1	x 2	<i>x</i> 3	<i>x</i> ₄	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	
<i>x</i> ₁	1	-1/4	0	0	1/4	3/4	0	11/4
<i>x</i> 3	0	_3/4	1	0	-1/4	1/4	0	1/4
<i>x</i> 4	0	2	0	1	0	-1	1	97
$-z_{rp}$	0	0	0	0	1	1	1	0

Because $z_{rp} = 0$ and because $\mathbf{v} = (0, 0, 0)$, we know we're done.

- Our current $\mathbf{u} = (-\frac{1}{2}, \frac{5}{2}, 0)$ is the optimal solution to (D).
- From (**RP**), we read off $\mathbf{x} = (\frac{11}{4}, 0, \frac{1}{4}, 97)$, the optimal solution to (**P**).

The fourth iteration: pivoting in **(RP)**

In this tableau, we can pivot on x_3 , and it will replace y_2 :

	x_1	x 2	<i>x</i> 3	<i>x</i> ₄	<i>y</i> ₁	<i>y</i> ₂	<i>y</i> ₃	
<i>x</i> ₁	1	-1/4	0	0	1/4	3/4	0	11/4
<i>x</i> 3	0	_3/4	1	0	-1/4	1/4	0	1/4
<i>x</i> 4	0	2	0	1	0	-1	1	97
$-z_{rp}$	0	0	0	0	1	1	1	0

Because $z_{rp} = 0$ and because $\mathbf{v} = (0, 0, 0)$, we know we're done.

- Our current $\mathbf{u} = (-\frac{1}{2}, \frac{5}{2}, 0)$ is the optimal solution to (D).
- From (**RP**), we read off $\mathbf{x} = (\frac{11}{4}, 0, \frac{1}{4}, 97)$, the optimal solution to (**P**).

(Ignoring u_3 and x_4 , $\mathbf{u} = (-\frac{1}{2}, \frac{5}{2})$ and $\mathbf{x} = (\frac{11}{4}, 0, \frac{1}{4})$ are optimal for the original (**D**) and (**P**).)

Comments on this method

• From the point of view of (**RP**), we've been solving one simplex tableau the whole time.

Comments on this method

- From the point of view of (**RP**), we've been solving one simplex tableau the whole time.
- The augmenting steps give us "hints" about which variables not to pivot on, in the form of frozen variables.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Comments on this method

- From the point of view of (**RP**), we've been solving one simplex tableau the whole time.
- The augmenting steps give us "hints" about which variables not to pivot on, in the form of frozen variables.

(In a perfect world, there is always only one variable to pivot on: the unfrozen variables are the ones that were already basic, and the one whose dual constraint just became tight. But sometimes this doesn't work out.)

Comments on this method

- From the point of view of (**RP**), we've been solving one simplex tableau the whole time.
- The augmenting steps give us "hints" about which variables not to pivot on, in the form of frozen variables.

(In a perfect world, there is always only one variable to pivot on: the unfrozen variables are the ones that were already basic, and the one whose dual constraint just became tight. But sometimes this doesn't work out.)

 This algorithm is well-suited for the revised simplex method.
If we use it, we don't have to keep around the frozen columns: we just compute columns of the tableau as we need them.