Integer programming Math 482, Lecture 32

Misha Lavrov

April 24, 2020

Integer linear programming

Definition

An *integer linear program* is a linear program in which some or all of the variables are constrained to have integer values only.

Integer linear programming

Definition

An *integer linear program* is a linear program in which some or all of the variables are constrained to have integer values only.

• Earlier in this class: bipartite matching.

This is an integer program, but total unimodularity saved us and guaranteed integer optimal solutions.

Integer linear programming

Definition

An *integer linear program* is a linear program in which some or all of the variables are constrained to have integer values only.

• Earlier in this class: bipartite matching.

This is an integer program, but total unimodularity saved us and guaranteed integer optimal solutions.

• Total unimodularity is important in integer programming, but doesn't often happen: usually, the integrality matters.

Integer linear programming

Definition

An *integer linear program* is a linear program in which some or all of the variables are constrained to have integer values only.

• Earlier in this class: bipartite matching.

This is an integer program, but total unimodularity saved us and guaranteed integer optimal solutions.

• Total unimodularity is important in integer programming, but doesn't often happen: usually, the integrality matters.

Introduction to integer programming ○●○○○	Logical constraints 000	Mixing logical and linear constraints
Somo ovamplas		

Some examples

Here is a completely ordinary linear program:

The optimal solution is $(x, y) = (4, \frac{3}{2})$.

Introduction to integer programming 00000	Logical constraints 000	Mixing logical and linear constraints
Some examples		

.

Now, change x to an integer variable:

The optimal solution is still $(x, y) = (4, \frac{3}{2})$. Coincidentally, the integrality didn't matter.

Introduction to integer programming 000●0	Logical constraints 000	Mixing logical and linear constraints

Some examples

Now, make x and y both integers:

The optimal solutions are (x, y) = (2, 2) and (x, y) = (3, 1).

Introduction to integer programming 000●0	Logical constraints 000	Mixing logical and linear constraints

Some examples

Now, make x and y both integers:

The optimal solutions are (x, y) = (2, 2) and (x, y) = (3, 1).

Note that rounding $(4, \frac{3}{2})$ to the nearest integer won't give us an optimal or even feasible solution!

Introduction to integer programming Logical constraints 0000 Nixing logical and linear constraints 000

Difficulty of approximation

Optimal integer solutions can be arbitrarily far from optimal real solutions. Example: take the region

$$\left\{(x,y)\in\mathbb{R}:rac{x-1}{998}\leq y\leqrac{x}{1000},x\geq 0,y\geq 0
ight\}.$$

Introduction to integer programming Logical constraints Mixing logical and linear constraints 0000 000 000 000

Difficulty of approximation

Optimal integer solutions can be arbitrarily far from optimal real solutions. Example: take the region

$$\left\{ (x,y) \in \mathbb{R} : \frac{x-1}{998} \le y \le \frac{x}{1000}, x \ge 0, y \ge 0 \right\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

Introduction to integer programming 0000 Logical constraints 000 Different constraints 000 Differen

Difficulty of approximation

Optimal integer solutions can be arbitrarily far from optimal real solutions. Example: take the region

$$\left\{ (x,y) \in \mathbb{R} : \frac{x-1}{998} \le y \le \frac{x}{1000}, x \ge 0, y \ge 0 \right\}.$$

This has a vertex at $(x, y) = (500, \frac{1}{2})$. But the only integer points are (0, 0) and (1, 0).

Introduction to integer programming 0000 Logical constraints 000 Different constraints 000 Differen

Difficulty of approximation

Optimal integer solutions can be arbitrarily far from optimal real solutions. Example: take the region

$$\left\{ (x,y) \in \mathbb{R} : \frac{x-1}{998} \le y \le \frac{x}{1000}, x \ge 0, y \ge 0 \right\}.$$

This has a vertex at $(x, y) = (500, \frac{1}{2})$. But the only integer points are (0, 0) and (1, 0).

Even determining if a region contains *any* integer points can be difficult.

Introduction to integer programming 00000	Logical constraints	Mixing logical and linear constraints
Logical constraints		

Logical expressions have Boolean variables with values $\ensuremath{\text{TRUE}}$ and $\ensuremath{\text{FALSE}}.$

(日)

• X₁ **AND** X₂ = **TRUE** when X₁ = X₂ = **TRUE**, and **FALSE** otherwise.

- X₁ **AND** X₂ = **TRUE** when X₁ = X₂ = **TRUE**, and **FALSE** otherwise.
- X₁ OR X₂ = TRUE when at least one of X₁, X₂ is TRUE, and FALSE otherwise.

- X₁ **AND** X₂ = **TRUE** when X₁ = X₂ = **TRUE**, and **FALSE** otherwise.
- X₁ OR X₂ = TRUE when at least one of X₁, X₂ is TRUE, and FALSE otherwise.

• NOT(TRUE) = FALSE and NOT(FALSE) = TRUE.

- X₁ **AND** X₂ = **TRUE** when X₁ = X₂ = **TRUE**, and **FALSE** otherwise.
- X₁ OR X₂ = TRUE when at least one of X₁, X₂ is TRUE, and FALSE otherwise.

• NOT(TRUE) = FALSE and NOT(FALSE) = TRUE.

We can use these to express logic puzzles such as Sudoku,

- X₁ **AND** X₂ = **TRUE** when X₁ = X₂ = **TRUE**, and **FALSE** otherwise.
- X₁ OR X₂ = TRUE when at least one of X₁, X₂ is TRUE, and FALSE otherwise.
- NOT(TRUE) = FALSE and NOT(FALSE) = TRUE.

We can use these to express logic puzzles such as Sudoku, but also combinatorial problems such as bipartite matching,

- X₁ AND X₂ = TRUE when X₁ = X₂ = TRUE, and FALSE otherwise.
- X₁ OR X₂ = TRUE when at least one of X₁, X₂ is TRUE, and FALSE otherwise.
- NOT(TRUE) = FALSE and NOT(FALSE) = TRUE.

We can use these to express logic puzzles such as Sudoku, but also combinatorial problems such as bipartite matching, graph coloring, and more.

(Example: does this Sudoku have a solution? Does this graph have a matching that covers all the vertices?)

(Example: does this Sudoku have a solution? Does this graph have a matching that covers all the vertices?)

This is

very hard: we can solve the problem by checking all 2ⁿ assignments of (X₁,...,X_n), but we don't even know if there's an algorithm that takes O(1.999ⁿ) steps.

(Example: does this Sudoku have a solution? Does this graph have a matching that covers all the vertices?)

This is

- very hard: we can solve the problem by checking all 2ⁿ assignments of (X₁,...,X_n), but we don't even know if there's an algorithm that takes O(1.999ⁿ) steps.
- very important: if we have good heuristics for it, lots of real-life problems become easier to attack.

Encode each Boolean variable X_i by an integer variable x_i with $0 \le x_i \le 1$: $X_i = \text{TRUE}$ corresponds to $x_i = 1$ and $X_i = \text{FALSE}$ corresponds to $x_i = 0$.

Encode each Boolean variable X_i by an integer variable x_i with $0 \le x_i \le 1$: $X_i = \text{TRUE}$ corresponds to $x_i = 1$ and $X_i = \text{FALSE}$ corresponds to $x_i = 0$.

Then X_1 **OR** X_2 **OR** ... **OR** X_k is equivalent to an inequality:

$$x_1+x_2+\cdots+x_k\geq 1.$$

We can write **NOT**(X_i) as $(1 - x_i)$.

Boolean satisfiability and integer programming

Encode each Boolean variable X_i by an integer variable x_i with $0 \le x_i \le 1$: $X_i = \text{TRUE}$ corresponds to $x_i = 1$ and $X_i = \text{FALSE}$ corresponds to $x_i = 0$.

Then X_1 **OR** X_2 **OR** ... **OR** X_k is equivalent to an inequality:

$$x_1 + x_2 + \cdots + x_k \ge 1.$$

We can write **NOT**(X_i) as $(1 - x_i)$.

So a system of inequalities can represent a logical expression in "conjunctive normal form": an **AND** of **OR**s.

Boolean satisfiability and integer programming

Encode each Boolean variable X_i by an integer variable x_i with $0 \le x_i \le 1$: $X_i = \text{TRUE}$ corresponds to $x_i = 1$ and $X_i = \text{FALSE}$ corresponds to $x_i = 0$.

Then X_1 **OR** X_2 **OR** ... **OR** X_k is equivalent to an inequality:

$$x_1 + x_2 + \cdots + x_k \ge 1.$$

We can write **NOT**(X_i) as $(1 - x_i)$.

So a system of inequalities can represent a logical expression in "conjunctive normal form": an **AND** of **OR**s.

Fact: all logical expressions can be put in this form. So integer programming can model all Boolean satisfiability problems!

Introduction to integer programming	Logical constraints 000	Mixing logical and linear constraints ●00
Fixed costs		

Introduction to integer programming 00000	Logical constraints 000	Mixing logical and linear constraints ●00
Fixed costs		

Example 1: Fixed costs

A banana factory wants to ship bananas to grocery stores Illinois. It can rent a warehouse in Colorado, but this doesn't add a per-banana price: it costs \$1000, no matter how many bananas are stored.

Introduction to integer programming 00000	Logical constraints 000	Mixing logical and linear constraints ●00
Fixed costs		

Example 1: Fixed costs

A banana factory wants to ship bananas to grocery stores Illinois. It can rent a warehouse in Colorado, but this doesn't add a per-banana price: it costs \$1000, no matter how many bananas are stored.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Add a variable w ∈ Z with 0 ≤ w ≤ 1, represented a warehouse rental by w = 1.

Introduction to integer programming 00000	Logical constraints 000	Mixing logical and linear constraints ●00
Fixed costs		

Example 1: Fixed costs

A banana factory wants to ship bananas to grocery stores Illinois. It can rent a warehouse in Colorado, but this doesn't add a per-banana price: it costs \$1000, no matter how many bananas are stored.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

- Add a variable w ∈ Z with 0 ≤ w ≤ 1, represented a warehouse rental by w = 1.
- Cost in the objective function 1000w.

Introduction to integer programming	Logical constraints 000	Mixing logical and linear constraints ●00
Fixed costs		

Example 1: Fixed costs

A banana factory wants to ship bananas to grocery stores Illinois. It can rent a warehouse in Colorado, but this doesn't add a per-banana price: it costs \$1000, no matter how many bananas are stored.

- Add a variable w ∈ Z with 0 ≤ w ≤ 1, represented a warehouse rental by w = 1.
- Cost in the objective function 1000w.
- We can write other constraints in terms of *w* when they depend on the existence of a warehouse.

Combining constraints with Boolean variables

Example 2: Conditional constraints

The warehouse can store up to 100 red, yellow, or green bananas—but only if it is rented. Otherwise, it can't store any bananas.

Assume $r, y, g \ge 0$ are the number of bananas stored.

Combining constraints with Boolean variables

Example 2: Conditional constraints

The warehouse can store up to 100 red, yellow, or green bananas—but only if it is rented. Otherwise, it can't store any bananas.

Assume $r, y, g \ge 0$ are the number of bananas stored.

- The unconditional constraint: $r + y + g \le 100$.
- The conditional constraint: $r + y + g \le 100w$.

Combining constraints with Boolean variables

Example 2: Conditional constraints

The warehouse can store up to 100 red, yellow, or green bananas—but only if it is rented. Otherwise, it can't store any bananas.

Assume $r, y, g \ge 0$ are the number of bananas stored.

- The unconditional constraint: $r + y + g \le 100$.
- The conditional constraint: $r + y + g \le 100w$.
- This simplifies to the unconditional constraint if w = 1, but forces r = y = g = 0 if w = 0.

If a warehouse is rented in Colorado, suddenly the banana company is subject to Colorado state laws, which say it can grow at most 50 blue bananas.

If a warehouse is rented in Colorado, suddenly the banana company is subject to Colorado state laws, which say it can grow at most 50 blue bananas.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

• The unconditional constraint: $b \leq 50$.

If a warehouse is rented in Colorado, suddenly the banana company is subject to Colorado state laws, which say it can grow at most 50 blue bananas.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

- The unconditional constraint: $b \leq 50$.
- The conditional constraint: $b \le 50 + 1000000(1 w)$.

If a warehouse is rented in Colorado, suddenly the banana company is subject to Colorado state laws, which say it can grow at most 50 blue bananas.

- The unconditional constraint: $b \leq 50$.
- The conditional constraint: $b \le 50 + 1000000(1 w)$.
- This simplifies to the unconditional constraint if w = 1 (if there is a warehouse), and is effectively not present if w = 0 (if there is no warehouse).

If a warehouse is rented in Colorado, suddenly the banana company is subject to Colorado state laws, which say it can grow at most 50 blue bananas.

- The unconditional constraint: $b \leq 50$.
- The conditional constraint: $b \le 50 + 1000000(1 w)$.
- This simplifies to the unconditional constraint if w = 1 (if there is a warehouse), and is effectively not present if w = 0 (if there is no warehouse).
- This method does not always work (only if there are practical limits on *b*) and very large values of the big number make the linear program worse to solve.