
Branch-and-bound methods Example The general method

Branch-and-Bound
Math 482, Lecture 33

Misha Lavrov

April 27, 2020



Branch-and-bound methods Example The general method

Branch-and-bound

The branch-and-bound method is a general strategy for
optimization problems.

We branch by casework, dividing a problem into several
subproblems, and then dividing those subproblems into further
subproblems, until they’re easy to solve.

When a subproblem is too hard to solve directly, we at least
put a bound on its objective value to let us eliminate
branches without having to look at all of them.

For example: if subproblem A definitely achieves an objective value
of 100 (and we’re maximizing), and subproblem B’s objective value
is at most 80, we can prune subproblem B without breaking it
down into further cases.



Branch-and-bound methods Example The general method

Branch-and-bound

The branch-and-bound method is a general strategy for
optimization problems.

We branch by casework, dividing a problem into several
subproblems, and then dividing those subproblems into further
subproblems, until they’re easy to solve.

When a subproblem is too hard to solve directly, we at least
put a bound on its objective value to let us eliminate
branches without having to look at all of them.

For example: if subproblem A definitely achieves an objective value
of 100 (and we’re maximizing), and subproblem B’s objective value
is at most 80, we can prune subproblem B without breaking it
down into further cases.



Branch-and-bound methods Example The general method

Branch-and-bound

The branch-and-bound method is a general strategy for
optimization problems.

We branch by casework, dividing a problem into several
subproblems, and then dividing those subproblems into further
subproblems, until they’re easy to solve.

When a subproblem is too hard to solve directly, we at least
put a bound on its objective value to let us eliminate
branches without having to look at all of them.

For example: if subproblem A definitely achieves an objective value
of 100 (and we’re maximizing), and subproblem B’s objective value
is at most 80, we can prune subproblem B without breaking it
down into further cases.



Branch-and-bound methods Example The general method

Branch-and-bound

The branch-and-bound method is a general strategy for
optimization problems.

We branch by casework, dividing a problem into several
subproblems, and then dividing those subproblems into further
subproblems, until they’re easy to solve.

When a subproblem is too hard to solve directly, we at least
put a bound on its objective value to let us eliminate
branches without having to look at all of them.

For example: if subproblem A definitely achieves an objective value
of 100 (and we’re maximizing), and subproblem B’s objective value
is at most 80, we can prune subproblem B without breaking it
down into further cases.



Branch-and-bound methods Example The general method

Branch-and-bound for integer programming

Here is an overview of how we can apply this to integer programs.

We can bound the value of an integer program by solving its
linear relaxation: the LP where we forget about the integer
constraints.

A subproblem is “easy” if the linear relaxation happens to
have an integer solution. Otherwise, we will need to branch
on it.

To branch on a fractional solution where xi = f /∈ Z, take the
following two subproblems:

one where we add the constraint xi ≤ bf c, and

one where we add the constraint xi ≥ df e.



Branch-and-bound methods Example The general method

Branch-and-bound for integer programming

Here is an overview of how we can apply this to integer programs.

We can bound the value of an integer program by solving its
linear relaxation: the LP where we forget about the integer
constraints.

A subproblem is “easy” if the linear relaxation happens to
have an integer solution. Otherwise, we will need to branch
on it.

To branch on a fractional solution where xi = f /∈ Z, take the
following two subproblems:

one where we add the constraint xi ≤ bf c, and

one where we add the constraint xi ≥ df e.



Branch-and-bound methods Example The general method

Branch-and-bound for integer programming

Here is an overview of how we can apply this to integer programs.

We can bound the value of an integer program by solving its
linear relaxation: the LP where we forget about the integer
constraints.

A subproblem is “easy” if the linear relaxation happens to
have an integer solution. Otherwise, we will need to branch
on it.

To branch on a fractional solution where xi = f /∈ Z, take the
following two subproblems:

one where we add the constraint xi ≤ bf c, and

one where we add the constraint xi ≥ df e.



Branch-and-bound methods Example The general method

Branch-and-bound for integer programming

Here is an overview of how we can apply this to integer programs.

We can bound the value of an integer program by solving its
linear relaxation: the LP where we forget about the integer
constraints.

A subproblem is “easy” if the linear relaxation happens to
have an integer solution. Otherwise, we will need to branch
on it.

To branch on a fractional solution where xi = f /∈ Z, take the
following two subproblems:

one where we add the constraint xi ≤ bf c, and

one where we add the constraint xi ≥ df e.



Branch-and-bound methods Example The general method

Branch-and-bound example

We will use branch and bound to solve the following linear
program:

maximize
x ,y∈Z

4x + 5y

subject to x + 4y ≤ 10

3x − 4y ≤ 6

x , y ≥ 0

Step 1: solve the LP relaxation. This has optimal solution
(x , y) = (4, 1.5) with 4x + 5y = 23.5.



Branch-and-bound methods Example The general method

Branch-and-bound example

We will use branch and bound to solve the following linear
program:

maximize
x ,y∈Z

4x + 5y

subject to x + 4y ≤ 10

3x − 4y ≤ 6

x , y ≥ 0

Step 1: solve the LP relaxation. This has optimal solution
(x , y) = (4, 1.5) with 4x + 5y = 23.5.



Branch-and-bound methods Example The general method

The branch step, geometrically

Since the optimal solution has y = 1.5 /∈ Z , we can consider two
cases that both eliminate this point: y ≤ 1, or y ≥ 2.

(Note: we must get rid of the point (4, 1.5) in future cases we
consider, or we’ll just get it back as the optimal solution again!)



Branch-and-bound methods Example The general method

The branch step, geometrically

Since the optimal solution has y = 1.5 /∈ Z , we can consider two
cases that both eliminate this point: y ≤ 1, or y ≥ 2.

(Note: we must get rid of the point (4, 1.5) in future cases we
consider, or we’ll just get it back as the optimal solution again!)



Branch-and-bound methods Example The general method

The branch step, geometrically

Since the optimal solution has y = 1.5 /∈ Z , we can consider two
cases that both eliminate this point: y ≤ 1, or y ≥ 2.

(Note: we must get rid of the point (4, 1.5) in future cases we
consider, or we’ll just get it back as the optimal solution again!)



Branch-and-bound methods Example The general method

The branch step in the simplex tableau

We already know how to use the simplex method. But it’s
important to note that we don’t have to solve the new LPs from
scratch.

The general method:

1 Take the optimal simplex tableau for the previous subproblem.

2 Add a new row (and slack variable) for the new constraint we
add.

3 Row-reduce the resulting tableau.

4 Solve with the dual simplex method.



Branch-and-bound methods Example The general method

The branch step in the simplex tableau

We already know how to use the simplex method. But it’s
important to note that we don’t have to solve the new LPs from
scratch.

The general method:

1 Take the optimal simplex tableau for the previous subproblem.

2 Add a new row (and slack variable) for the new constraint we
add.

3 Row-reduce the resulting tableau.

4 Solve with the dual simplex method.



Branch-and-bound methods Example The general method

The branch step in the simplex tableau

We already know how to use the simplex method. But it’s
important to note that we don’t have to solve the new LPs from
scratch.

The general method:

1 Take the optimal simplex tableau for the previous subproblem.

2 Add a new row (and slack variable) for the new constraint we
add.

3 Row-reduce the resulting tableau.

4 Solve with the dual simplex method.



Branch-and-bound methods Example The general method

The branch step in the simplex tableau

We already know how to use the simplex method. But it’s
important to note that we don’t have to solve the new LPs from
scratch.

The general method:

1 Take the optimal simplex tableau for the previous subproblem.

2 Add a new row (and slack variable) for the new constraint we
add.

3 Row-reduce the resulting tableau.

4 Solve with the dual simplex method.



Branch-and-bound methods Example The general method

The branch step in the simplex tableau

We already know how to use the simplex method. But it’s
important to note that we don’t have to solve the new LPs from
scratch.

The general method:

1 Take the optimal simplex tableau for the previous subproblem.

2 Add a new row (and slack variable) for the new constraint we
add.

3 Row-reduce the resulting tableau.

4 Solve with the dual simplex method.



Branch-and-bound methods Example The general method

The branch step: an example

Here’s how we do this to add a y ≥ 2 constraint to the LP that
gave us (x , y) = (4, 1.5).



Branch-and-bound methods Example The general method

The branch step: an example

Here’s how we do this to add a y ≥ 2 constraint to the LP that
gave us (x , y) = (4, 1.5).

Step 1: take the optimal tableau

x y s1 s2
y 0 1 3/16 −1/16 3/2
x 1 0 1/4 1/4 4

−z 0 0 −31/16 −11/16 −47/2



Branch-and-bound methods Example The general method

The branch step: an example

Here’s how we do this to add a y ≥ 2 constraint to the LP that
gave us (x , y) = (4, 1.5).

Step 2: Add a new row for “−y + s3 = −2”

x y s1 s2 s3
y 0 1 3/16 −1/16 0 3/2
x 1 0 1/4 1/4 0 4
s3 0 −1 0 0 1 −2

−z 0 0 −31/16 −11/16 0 −47/2



Branch-and-bound methods Example The general method

The branch step: an example

Here’s how we do this to add a y ≥ 2 constraint to the LP that
gave us (x , y) = (4, 1.5).

Step 3: Row-reduce this tableau

x y s1 s2 s3
y 0 1 3/16 −1/16 0 3/2
x 1 0 1/4 1/4 0 4
s3 0 0 3/16 −1/16 1 −1/2

−z 0 0 −31/16 −11/16 0 −47/2



Branch-and-bound methods Example The general method

The branch step: an example

Here’s how we do this to add a y ≥ 2 constraint to the LP that
gave us (x , y) = (4, 1.5).

Step 4: Solve using the dual simplex method

x y s1 s2 s3
y 0 1 0 0 −1 2
x 1 0 1 0 4 2
s2 0 0 −3 1 −16 8

−z 0 0 −4 0 −11 −18



Branch-and-bound methods Example The general method

Solving the first two subproblems

What we get when we branch on y ≤ 1 versus y ≥ 2:

(x , y) = (4, 1.5)
z = 23.5

(x , y) = (2, 2)
z = 18

(x , y) = (3.3, 1)
z = 18.3

y ≥ 2 y ≤ 1

The left node is an integer solution, giving us a lower bound
of 18.

The right node is a fractional solution with z > 18, so it’s still
worth exploring.

We can branch on x : add x ≤ 3 or x ≥ 4 as a constraint.



Branch-and-bound methods Example The general method

Solving the first two subproblems

What we get when we branch on y ≤ 1 versus y ≥ 2:

(x , y) = (4, 1.5)
z = 23.5

(x , y) = (2, 2)
z = 18

(x , y) = (3.3, 1)
z = 18.3

y ≥ 2 y ≤ 1

The left node is an integer solution, giving us a lower bound
of 18.

The right node is a fractional solution with z > 18, so it’s still
worth exploring.

We can branch on x : add x ≤ 3 or x ≥ 4 as a constraint.



Branch-and-bound methods Example The general method

Solving the first two subproblems

What we get when we branch on y ≤ 1 versus y ≥ 2:

(x , y) = (4, 1.5)
z = 23.5

(x , y) = (2, 2)
z = 18

(x , y) = (3.3, 1)
z = 18.3

y ≥ 2 y ≤ 1

The left node is an integer solution, giving us a lower bound
of 18.

The right node is a fractional solution with z > 18, so it’s still
worth exploring.

We can branch on x : add x ≤ 3 or x ≥ 4 as a constraint.



Branch-and-bound methods Example The general method

Solving the first two subproblems

What we get when we branch on y ≤ 1 versus y ≥ 2:

(x , y) = (4, 1.5)
z = 23.5

(x , y) = (2, 2)
z = 18

(x , y) = (3.3, 1)
z = 18.3

y ≥ 2 y ≤ 1

The left node is an integer solution, giving us a lower bound
of 18.

The right node is a fractional solution with z > 18, so it’s still
worth exploring.

We can branch on x : add x ≤ 3 or x ≥ 4 as a constraint.



Branch-and-bound methods Example The general method

Solving the next two subproblems

What we get when we branch on x ≤ 3 versus x ≥ 4 (from the
node where we already had y ≤ 1 as an extra constraint):

(x , y) = (3.3, 1)
z = 18.3

infeasible
z = −∞

(x , y) = (3, 1)
z = 17

x ≥ 4 x ≤ 3

The left node is infeasible, so we ignore it completely.

The right node is another integer solution, but it has
z = 17 < 18, so it’s not as good as the first. (Even if it were
a fractional solution, we wouldn’t branch on it.)

We have no more nodes worth exploring, so we’re done.



Branch-and-bound methods Example The general method

Solving the next two subproblems

What we get when we branch on x ≤ 3 versus x ≥ 4 (from the
node where we already had y ≤ 1 as an extra constraint):

(x , y) = (3.3, 1)
z = 18.3

infeasible
z = −∞

(x , y) = (3, 1)
z = 17

x ≥ 4 x ≤ 3

The left node is infeasible, so we ignore it completely.

The right node is another integer solution, but it has
z = 17 < 18, so it’s not as good as the first. (Even if it were
a fractional solution, we wouldn’t branch on it.)

We have no more nodes worth exploring, so we’re done.



Branch-and-bound methods Example The general method

Solving the next two subproblems

What we get when we branch on x ≤ 3 versus x ≥ 4 (from the
node where we already had y ≤ 1 as an extra constraint):

(x , y) = (3.3, 1)
z = 18.3

infeasible
z = −∞

(x , y) = (3, 1)
z = 17

x ≥ 4 x ≤ 3

The left node is infeasible, so we ignore it completely.

The right node is another integer solution, but it has
z = 17 < 18, so it’s not as good as the first. (Even if it were
a fractional solution, we wouldn’t branch on it.)

We have no more nodes worth exploring, so we’re done.



Branch-and-bound methods Example The general method

Solving the next two subproblems

What we get when we branch on x ≤ 3 versus x ≥ 4 (from the
node where we already had y ≤ 1 as an extra constraint):

(x , y) = (3.3, 1)
z = 18.3

infeasible
z = −∞

(x , y) = (3, 1)
z = 17

x ≥ 4 x ≤ 3

The left node is infeasible, so we ignore it completely.

The right node is another integer solution, but it has
z = 17 < 18, so it’s not as good as the first. (Even if it were
a fractional solution, we wouldn’t branch on it.)

We have no more nodes worth exploring, so we’re done.



Branch-and-bound methods Example The general method

A formal description

Formally, the branch-and-bound algorithm works as follows.

We maintain:

A list L of “nodes”: linear programs to solve.

(Initially, L only contains one node: the LP relaxation of our
original problem.)

A point x∗, the best integer solution found so far, and its
objective value z∗.

(Initially, there is no x∗, and we set z∗ = −∞.)

At each step, we pick a node, remove it from L, solve the LP, and
do something based on the solution. Repeat until L is empty.



Branch-and-bound methods Example The general method

A formal description

Formally, the branch-and-bound algorithm works as follows.

We maintain:

A list L of “nodes”: linear programs to solve.

(Initially, L only contains one node: the LP relaxation of our
original problem.)

A point x∗, the best integer solution found so far, and its
objective value z∗.

(Initially, there is no x∗, and we set z∗ = −∞.)

At each step, we pick a node, remove it from L, solve the LP, and
do something based on the solution. Repeat until L is empty.



Branch-and-bound methods Example The general method

A formal description

Formally, the branch-and-bound algorithm works as follows.

We maintain:

A list L of “nodes”: linear programs to solve.

(Initially, L only contains one node: the LP relaxation of our
original problem.)

A point x∗, the best integer solution found so far, and its
objective value z∗.

(Initially, there is no x∗, and we set z∗ = −∞.)

At each step, we pick a node, remove it from L, solve the LP, and
do something based on the solution. Repeat until L is empty.



Branch-and-bound methods Example The general method

A formal description

Formally, the branch-and-bound algorithm works as follows.

We maintain:

A list L of “nodes”: linear programs to solve.

(Initially, L only contains one node: the LP relaxation of our
original problem.)

A point x∗, the best integer solution found so far, and its
objective value z∗.

(Initially, there is no x∗, and we set z∗ = −∞.)

At each step, we pick a node, remove it from L, solve the LP, and
do something based on the solution. Repeat until L is empty.



Branch-and-bound methods Example The general method

A formal description

Formally, the branch-and-bound algorithm works as follows.

We maintain:

A list L of “nodes”: linear programs to solve.

(Initially, L only contains one node: the LP relaxation of our
original problem.)

A point x∗, the best integer solution found so far, and its
objective value z∗.

(Initially, there is no x∗, and we set z∗ = −∞.)

At each step, we pick a node, remove it from L, solve the LP, and
do something based on the solution.

Repeat until L is empty.



Branch-and-bound methods Example The general method

A formal description

Formally, the branch-and-bound algorithm works as follows.

We maintain:

A list L of “nodes”: linear programs to solve.

(Initially, L only contains one node: the LP relaxation of our
original problem.)

A point x∗, the best integer solution found so far, and its
objective value z∗.

(Initially, there is no x∗, and we set z∗ = −∞.)

At each step, we pick a node, remove it from L, solve the LP, and
do something based on the solution. Repeat until L is empty.



Branch-and-bound methods Example The general method

Handling a new node

Suppose the node we look at has optimal solution x with objective
value z . Then, in order:

1 If z ≤ z∗, do nothing; the node is pruned by bound.

2 If z > z∗ and x is an integer solution, set x∗ = x and z∗ = z ;
the node is pruned by integrality.

3 If z > z∗ but xi = f /∈ Z for some i , we branch on xi .

Add new nodes to L based on this node: one where we add
the constraint xi ≤ bf c, and one where we add xi ≥ df e.

If the node we look at has no feasible solution, we also do nothing;
the node is pruned by infeasibility.



Branch-and-bound methods Example The general method

Handling a new node

Suppose the node we look at has optimal solution x with objective
value z . Then, in order:

1 If z ≤ z∗, do nothing; the node is pruned by bound.

2 If z > z∗ and x is an integer solution, set x∗ = x and z∗ = z ;
the node is pruned by integrality.

3 If z > z∗ but xi = f /∈ Z for some i , we branch on xi .

Add new nodes to L based on this node: one where we add
the constraint xi ≤ bf c, and one where we add xi ≥ df e.

If the node we look at has no feasible solution, we also do nothing;
the node is pruned by infeasibility.



Branch-and-bound methods Example The general method

Handling a new node

Suppose the node we look at has optimal solution x with objective
value z . Then, in order:

1 If z ≤ z∗, do nothing; the node is pruned by bound.

2 If z > z∗ and x is an integer solution, set x∗ = x and z∗ = z ;
the node is pruned by integrality.

3 If z > z∗ but xi = f /∈ Z for some i , we branch on xi .

Add new nodes to L based on this node: one where we add
the constraint xi ≤ bf c, and one where we add xi ≥ df e.

If the node we look at has no feasible solution, we also do nothing;
the node is pruned by infeasibility.



Branch-and-bound methods Example The general method

Handling a new node

Suppose the node we look at has optimal solution x with objective
value z . Then, in order:

1 If z ≤ z∗, do nothing; the node is pruned by bound.

2 If z > z∗ and x is an integer solution, set x∗ = x and z∗ = z ;
the node is pruned by integrality.

3 If z > z∗ but xi = f /∈ Z for some i , we branch on xi .

Add new nodes to L based on this node: one where we add
the constraint xi ≤ bf c, and one where we add xi ≥ df e.

If the node we look at has no feasible solution, we also do nothing;
the node is pruned by infeasibility.



Branch-and-bound methods Example The general method

Handling a new node

Suppose the node we look at has optimal solution x with objective
value z . Then, in order:

1 If z ≤ z∗, do nothing; the node is pruned by bound.

2 If z > z∗ and x is an integer solution, set x∗ = x and z∗ = z ;
the node is pruned by integrality.

3 If z > z∗ but xi = f /∈ Z for some i , we branch on xi .

Add new nodes to L based on this node: one where we add
the constraint xi ≤ bf c, and one where we add xi ≥ df e.

If the node we look at has no feasible solution, we also do nothing;
the node is pruned by infeasibility.



Branch-and-bound methods Example The general method

Branching in our example

(x , y) = (4, 1.5)
z = 23.5

(x , y) = (2, 2)
z = 18

(x , y) = (3.3, 1)
z = 18.3

infeasible
z = −∞

(x , y) = (3, 1)
z = 17

y ≥ 2 y ≤ 1

x ≥ 4 x ≤ 3
Pruned by integrality

Pruned by infeasibility Pruned by bound



Branch-and-bound methods Example The general method

Further considerations

There are several places where we have some freedom to choose
how to branch-and-bound.

Which node from L do we look at first?

Nodes whose parent had a larger z are more promising. We
might also want to try to get a few integer solutions as
quickly as possible.

Which fractional variable do we branch on, if we have a
choice?

We might care if xi is very close to an integer or far from one.
We might also care if xi has a high coefficient in the objective
function.



Branch-and-bound methods Example The general method

Further considerations

There are several places where we have some freedom to choose
how to branch-and-bound.

Which node from L do we look at first?

Nodes whose parent had a larger z are more promising. We
might also want to try to get a few integer solutions as
quickly as possible.

Which fractional variable do we branch on, if we have a
choice?

We might care if xi is very close to an integer or far from one.
We might also care if xi has a high coefficient in the objective
function.



Branch-and-bound methods Example The general method

Further considerations

There are several places where we have some freedom to choose
how to branch-and-bound.

Which node from L do we look at first?

Nodes whose parent had a larger z are more promising. We
might also want to try to get a few integer solutions as
quickly as possible.

Which fractional variable do we branch on, if we have a
choice?

We might care if xi is very close to an integer or far from one.
We might also care if xi has a high coefficient in the objective
function.



Branch-and-bound methods Example The general method

Further considerations

There are several places where we have some freedom to choose
how to branch-and-bound.

Which node from L do we look at first?

Nodes whose parent had a larger z are more promising. We
might also want to try to get a few integer solutions as
quickly as possible.

Which fractional variable do we branch on, if we have a
choice?

We might care if xi is very close to an integer or far from one.
We might also care if xi has a high coefficient in the objective
function.



Branch-and-bound methods Example The general method

Further considerations

There are several places where we have some freedom to choose
how to branch-and-bound.

Which node from L do we look at first?

Nodes whose parent had a larger z are more promising. We
might also want to try to get a few integer solutions as
quickly as possible.

Which fractional variable do we branch on, if we have a
choice?

We might care if xi is very close to an integer or far from one.
We might also care if xi has a high coefficient in the objective
function.


