Cutting Planes
 Math 482, Lecture 34

Misha Lavrov

April 29, 2020

Cutting planes

Suppose we have an integer linear program, and a fractional solution \mathbf{x}^{*} to its LP relaxation.

Definition

A cutting plane is an inequality $\boldsymbol{\alpha} \cdot \mathbf{x} \leq \beta$ that

Cutting planes

Suppose we have an integer linear program, and a fractional solution \mathbf{x}^{*} to its LP relaxation.

Definition

A cutting plane is an inequality $\boldsymbol{\alpha} \cdot \mathbf{x} \leq \beta$ that
(1) Is true at every integer solution.

Cutting planes

Suppose we have an integer linear program, and a fractional solution \mathbf{x}^{*} to its LP relaxation.

Definition

A cutting plane is an inequality $\boldsymbol{\alpha} \cdot \mathbf{x} \leq \beta$ that
(1) Is true at every integer solution.
(2) Is false at \mathbf{x}^{*}.

Cutting planes

Suppose we have an integer linear program, and a fractional solution \mathbf{x}^{*} to its LP relaxation.

Definition

A cutting plane is an inequality $\boldsymbol{\alpha} \cdot \mathbf{x} \leq \beta$ that
(1) Is true at every integer solution.
(2) Is false at \mathbf{x}^{*}.

Example:

$$
\left\{\begin{array}{c}
-x+3 y \leq 3 \\
3 x-y \leq 3 \\
x, y \geq 0
\end{array}\right.
$$

Cutting planes

Suppose we have an integer linear program, and a fractional solution \mathbf{x}^{*} to its LP relaxation.

Definition

A cutting plane is an inequality $\boldsymbol{\alpha} \cdot \mathbf{x} \leq \beta$ that
(1) Is true at every integer solution.
(2) Is false at \mathbf{x}^{*}.

Example:

$$
\begin{gathered}
\left\{\begin{array}{c}
-x+3 y \leq 3 \\
3 x-y \leq 3 \\
x, y \geq 0
\end{array}\right. \\
\mathbf{x}+\mathbf{y} \leq \mathbf{2}
\end{gathered}
$$

Cutting plane algorithms

If we can generate cutting planes, we can solve integer linear programs.

Cutting plane algorithms

If we can generate cutting planes, we can solve integer linear programs.
(1) Solve the LP relaxation.

Cutting plane algorithms

If we can generate cutting planes, we can solve integer linear programs.
(1) Solve the LP relaxation.
(2) If we get a fractional solution, add a cutting plane to our constraints.

Cutting plane algorithms

If we can generate cutting planes, we can solve integer linear programs.
(1) Solve the LP relaxation.
(2) If we get a fractional solution, add a cutting plane to our constraints.
(0) Solve the new LP relaxation.

Cutting plane algorithms

If we can generate cutting planes, we can solve integer linear programs.
(1) Solve the LP relaxation.
(2) If we get a fractional solution, add a cutting plane to our constraints.
(3) Solve the new LP relaxation.
(Repeat steps 2-3 until we get an integer solution.

Cutting plane algorithms

If we can generate cutting planes, we can solve integer linear programs.
(1) Solve the LP relaxation.
(2) If we get a fractional solution, add a cutting plane to our constraints.
(3) Solve the new LP relaxation.
(Repeat steps 2-3 until we get an integer solution.
There are lots of methods to generate cutting planes. They vary in quality and in how long they take to find. We'll just talk about one of them.

An example

$$
\begin{array}{cc}
\underset{x, y \in \mathbb{Z}}{\operatorname{maximize}} & 2 x+3 y \\
\text { subject to } & x+2 y \leq 3 \\
& 4 x+5 y \leq 10 \\
& x, y \geq 0
\end{array}
$$

An example

$$
\begin{array}{cl}
\underset{x, y \in \mathbb{Z}}{\operatorname{maximize}} & 2 x+3 y \\
\text { subject to } & x+2 y \leq 3 \\
& 4 x+5 y \leq 10 \\
& x, y \geq 0
\end{array}
$$

Properties of this example that we need to have:
(1) All variables are integers, not just some.

An example

$$
\begin{array}{cl}
\underset{x, y \in \mathbb{Z}}{\operatorname{maximize}} & 2 x+3 y \\
\text { subject to } & x+2 y \leq 3 \\
& 4 x+5 y \leq 10 \\
& x, y \geq 0
\end{array}
$$

Properties of this example that we need to have:
(1) All variables are integers, not just some.
(2) All coefficients in the constraints are integers.

An example

$$
\begin{array}{cc}
\underset{x, y \in \mathbb{Z}}{\operatorname{maximize}} & 2 x+3 y \\
\text { subject to } & x+2 y \leq 3 \\
& 4 x+5 y \leq 10 \\
& x, y \geq 0
\end{array}
$$

Properties of this example that we need to have:
(1) All variables are integers, not just some.
(2) All coefficients in the constraints are integers.

This means that the slacks $s_{1}=3-(x+2 y)$ and $s_{2}=10-(4 x+5 y)$ are also integers.

Solving the LP relaxation

Starting tableau:

	x	y	s_{1}	s_{2}	
s_{1}	1	2	1	0	3
s_{2}	4	5	0	1	10
$-z$	2	3	0	0	0

Solving the LP relaxation

Starting tableau:

	x	y	s_{1}	s_{2}	
s_{1}	1	2	1	0	3
s_{2}	4	5	0	1	10
$-z$	2	3	0	0	0

	x	y	s_{1}	s_{2}	
y	$1 / 2$	1	$1 / 2$	0	$3 / 2$
s_{2}	$3 / 2$	0	$-5 / 2$	1	$5 / 2$
$-z$	$1 / 2$	0	$-3 / 2$	0	$-9 / 2$

Solving the LP relaxation

Starting tableau:

	x	y	s_{1}	s_{2}	
s_{1}	1	2	1	0	3
s_{2}	4	5	0	1	10
$-z$	2	3	0	0	0

Pivot on y :

	x	y	s_{1}	s_{2}	
y	$1 / 2$	1	$1 / 2$	0	$3 / 2$
s_{2}	$3 / 2$	0	$-5 / 2$	1	$5 / 2$
$-z$	$1 / 2$	0	$-3 / 2$	0	$-9 / 2$

	x	y	s_{1}	s_{2}	
y	0	1	$4 / 3$	$-1 / 3$	$2 / 3$
x	1	0	$-5 / 3$	$2 / 3$	$5 / 3$
$-z$	0	0	$-2 / 3$	$-1 / 3$	$-16 / 3$

Pivot on x :

Generating the cut

The first row of the optimal tableau says:

$$
y+\frac{4}{3} s_{1}-\frac{1}{3} s_{2}=\frac{2}{3}
$$

Generating the cut

The first row of the optimal tableau says:

$$
y+\frac{4}{3} s_{1}-\frac{1}{3} s_{2}=\frac{2}{3} .
$$

We separate this into a integer part and a nonnegative part:

$$
\underbrace{y+s_{1}-s_{2}}_{\text {integer }}+\underbrace{\frac{1}{3} s_{1}+\frac{2}{3} s_{2}}_{\text {nonnegative }}=\frac{2}{3}
$$

Generating the cut

The first row of the optimal tableau says:

$$
y+\frac{4}{3} s_{1}-\frac{1}{3} s_{2}=\frac{2}{3} .
$$

We separate this into a integer part and a nonnegative part:

$$
\underbrace{y+s_{1}-s_{2}}_{\text {integer }}+\underbrace{\frac{1}{3} s_{1}+\frac{2}{3} s_{2}}_{\text {nonnegative }}=\frac{2}{3} .
$$

Dropping the nonnegative part creates an inequality:

$$
y+s_{1}-s_{2} \leq \frac{2}{3} .
$$

Generating the cut

The first row of the optimal tableau says:

$$
y+\frac{4}{3} s_{1}-\frac{1}{3} s_{2}=\frac{2}{3}
$$

We separate this into a integer part and a nonnegative part:

$$
\underbrace{y+s_{1}-s_{2}}_{\text {integer }}+\underbrace{\frac{1}{3} s_{1}+\frac{2}{3} s_{2}}_{\text {nonnegative }}=\frac{2}{3} .
$$

Dropping the nonnegative part creates an inequality:

$$
y+s_{1}-s_{2} \leq \frac{2}{3} .
$$

An integer that's $\leq \frac{2}{3}$ is ≤ 0, so we can strengthen this:

$$
y+s_{1}-s_{2} \leq 0
$$

This is the Gomory fractional cut.

Alternate form I: solving for x and y

The inequality we get has several equivalent forms. For example,

$$
y+s_{1}-s_{2} \leq 0 \Longrightarrow y+[3-(x+2 y)]-[10-(4 x+5 y)] \leq 0
$$

$$
\text { or } 3 x+4 y \leq 7
$$

Alternate form I: solving for x and y

The inequality we get has several equivalent forms. For example,

$$
y+s_{1}-s_{2} \leq 0 \Longrightarrow y+[3-(x+2 y)]-[10-(4 x+5 y)] \leq 0
$$

or $3 x+4 y \leq 7$.
This is useful for adding the cutting plane to our constraints:

$$
\begin{array}{cc}
\underset{x, y \in \mathbb{Z}}{\operatorname{maximize}} & 2 x+3 y \\
\text { subject to } & x+2 y \leq 3 \\
& 4 x+5 y \leq 10 \\
& x, y \geq 0
\end{array}
$$

Alternate form l: solving for x and y

The inequality we get has several equivalent forms. For example,

$$
y+s_{1}-s_{2} \leq 0 \Longrightarrow y+[3-(x+2 y)]-[10-(4 x+5 y)] \leq 0
$$

or $3 x+4 y \leq 7$.
This is useful for adding the cutting plane to our constraints:

$$
\begin{array}{ll}
\underset{x, y \in \mathbb{Z}}{\operatorname{maximize}} & 2 x+3 y \\
\text { subject to } & x+2 y \leq 3 \\
& 4 x+5 y \leq 10 \\
& 3 \mathbf{x}+\mathbf{4 y} \leq \mathbf{7} \\
& x, y \geq 0
\end{array}
$$

Alternate form II: tableau form

The inequality we get has several equivalent forms. We can:
(1) Add a slack variable, turning $y-s_{1}+s_{2} \leq 0$ into $y+s_{1}-s_{2}+s_{3}=0$. (Note that s_{3} is an integer!)

Alternate form II: tableau form

The inequality we get has several equivalent forms. We can:
(1) Add a slack variable, turning $y-s_{1}+s_{2} \leq 0$ into $y+s_{1}-s_{2}+s_{3}=0$. (Note that s_{3} is an integer!)
(2) Subtract the equation $y+\frac{4}{3} s_{1}-\frac{1}{3} s_{2}=\frac{2}{3}$ we started with, getting

$$
-\frac{1}{3} s_{1}-\frac{2}{3} s_{2}+s_{3}=-\frac{2}{3} .
$$

Alternate form II: tableau form

The inequality we get has several equivalent forms. We can:
(1) Add a slack variable, turning $y-s_{1}+s_{2} \leq 0$ into $y+s_{1}-s_{2}+s_{3}=0$. (Note that s_{3} is an integer!)
(2) Subtract the equation $y+\frac{4}{3} s_{1}-\frac{1}{3} s_{2}=\frac{2}{3}$ we started with, getting

$$
-\frac{1}{3} s_{1}-\frac{2}{3} s_{2}+s_{3}=-\frac{2}{3} .
$$

This form is good for adding to the tableau:

	x	y	s_{1}	s_{2}	
y	0	1	$4 / 3$	$-1 / 3$	$2 / 3$
x	1	0	$-5 / 3$	$2 / 3$	$5 / 3$
$-z$	0	0	$-2 / 3$	$-1 / 3$	$-16 / 3$

Alternate form II: tableau form

The inequality we get has several equivalent forms. We can:
(1) Add a slack variable, turning $y-s_{1}+s_{2} \leq 0$ into $y+s_{1}-s_{2}+s_{3}=0$. (Note that s_{3} is an integer!)
(2) Subtract the equation $y+\frac{4}{3} s_{1}-\frac{1}{3} s_{2}=\frac{2}{3}$ we started with, getting

$$
-\frac{1}{3} s_{1}-\frac{2}{3} s_{2}+s_{3}=-\frac{2}{3} .
$$

This form is good for adding to the tableau:

	x	y	s_{1}	s_{2}	s_{3}	
y	0	1	$4 / 3$	$-1 / 3$	0	$2 / 3$
x	1	0	$-5 / 3$	$2 / 3$	0	$5 / 3$
s_{3}	0	0	$-1 / 3$	$-2 / 3$	1	$-2 / 3$
$-z$	0	0	$-2 / 3$	$-1 / 3$	0	$-16 / 3$

Solving the new LP

We can continue with the dual simplex method.

Our new tableau:

	x	y	s_{1}	s_{2}	s_{3}	
y	0	1	$4 / 3$	$-1 / 3$	0	$2 / 3$
x	1	0	$-5 / 3$	$2 / 3$	0	$5 / 3$
s_{3}	0	0	$-1 / 3$	$-2 / 3$	1	$-2 / 3$
$-z$	0	0	$-2 / 3$	$-1 / 3$	0	$-16 / 3$

Solving the new LP

We can continue with the dual simplex method.

Our new tableau:		x	y		s_{1}	s_{2}	s_{3}	
	y	0	1		4/3	-1/3	0	2/3
	x	1	0		-5/3	2/3	0	5/3
	s_{3}	0	0		-1/3	-2/3	1	-2/3
	$-z$	0	0		-2/3	-1/3	0	-16/3
Pivot on s_{3} 's row:		x	y	y	s_{1}	s_{2}	s_{3}	
	y	0		1	$3 / 2$	0	-1/2	1
	x	1		0	-2	0	1	1
	s_{2}	0		0	$1 / 2$	1	-3/2	1
	-z	0		0	-1/2	0	-1/2	-5

Solving the new LP

We can continue with the dual simplex method.

Our new tableau:		x	y		s_{1}	s_{2}	s_{3}	
	y	0	1		4/3	-1/3	0	2/3
	x	1	0		-5/3	2/3	0	5/3
	s_{3}	0	0		-1/3	-2/3	1	-2/3
	$-z$	0	0		-2/3	-1/3	0	-16/3
Pivot on s_{3} 's row:		\times	x	y	s_{1}	s_{2}	s_{3}	
	y	0		1	$3 / 2$	0	-1/2	1
	x	1		0	-2	0	1	1
	s_{2}	0		0	1/2	1	$-3 / 2$	1
	$-z$	0		0	-1/2	0	-1/2	-5

Here, we found the integer optimal solution $(x, y)=(1,1)$. In general, this may take more cutting plane steps.

General form

In general, starting from an inequality

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

in integer variables x_{1}, \ldots, x_{n},

General form

In general, starting from an inequality

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

in integer variables x_{1}, \ldots, x_{n}, the Gomory cut is

$$
\left\lfloor a_{1}\right\rfloor x_{1}+\left\lfloor a_{2}\right\rfloor x_{2}+\cdots+\left\lfloor a_{n}\right\rfloor x_{n} \leq\lfloor b\rfloor
$$

General form

In general, starting from an inequality

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

in integer variables x_{1}, \ldots, x_{n}, the Gomory cut is

$$
\left\lfloor a_{1}\right\rfloor x_{1}+\left\lfloor a_{2}\right\rfloor x_{2}+\cdots+\left\lfloor a_{n}\right\rfloor x_{n} \leq\lfloor b\rfloor
$$

though you'll see it more often written as

$$
\left(a_{1}-\left\lfloor a_{1}\right\rfloor\right) x_{1}+\left(a_{2}-\left\lfloor a_{2}\right\rfloor\right) x_{2}+\cdots+\left(a_{n}-\left\lfloor a_{n}\right\rfloor\right) x_{n} \geq b-\lfloor b\rfloor .
$$

General form

In general, starting from an inequality

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b
$$

in integer variables x_{1}, \ldots, x_{n}, the Gomory cut is

$$
\left\lfloor a_{1}\right\rfloor x_{1}+\left\lfloor a_{2}\right\rfloor x_{2}+\cdots+\left\lfloor a_{n}\right\rfloor x_{n} \leq\lfloor b\rfloor
$$

though you'll see it more often written as

$$
\left(a_{1}-\left\lfloor a_{1}\right\rfloor\right) x_{1}+\left(a_{2}-\left\lfloor a_{2}\right\rfloor\right) x_{2}+\cdots+\left(a_{n}-\left\lfloor a_{n}\right\rfloor\right) x_{n} \geq b-\lfloor b\rfloor .
$$

(This last form is the negative of the inequality we added to the tableau.)

Branch-and-cut

We can combine the two methods we've learned into a hybrid method called "branch-and-cut".

Branch-and-cut

We can combine the two methods we've learned into a hybrid method called "branch-and-cut".

In the hybrid method, when we solve an LP relaxation and get a fractional solution, we have two choices:

- Branch on a fractional variable, as in branch-and-bound.

Branch-and-cut

We can combine the two methods we've learned into a hybrid method called "branch-and-cut".

In the hybrid method, when we solve an LP relaxation and get a fractional solution, we have two choices:

- Branch on a fractional variable, as in branch-and-bound.
- Add a cutting plane.

Branch-and-cut

We can combine the two methods we've learned into a hybrid method called "branch-and-cut".

In the hybrid method, when we solve an LP relaxation and get a fractional solution, we have two choices:

- Branch on a fractional variable, as in branch-and-bound.
- Add a cutting plane.

How to decide which one to do?
Some LPs are more amenable to cutting planes than others. If we're going to get a really strong cutting plane, we should add it. If it looks like cuts are not working, we can decide to branch.

