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The traveling salesman problem

We are given:

1 Cities numbered 1, 2, . . . , n (vertices).

2 A cost cij to travel from city i to city j .

Goal: find a tour of all n cities, starting and ending at city 1, with
the cheapest cost.

Common assumptions:

1 cij = cji : costs are symmetric and direction of the tour doesn’t
matter.

2 cij + cjk ≥ cik : triangle inequality.

Important special case: cities are points in the plane, and cij is the
distance from i to j .
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An incomplete ILP formulation: “local constraints”

Describe a tour by variables xij ∈ {0, 1}: xij = 1 if tour goes from i
to j , xij = 0 otherwise.

Minimize the total cost of the tour:

minimize
n∑

i=1

n∑
j=1

cijxij .

Enter each city exactly once:∑
1≤i≤n
i 6=j

xij = 1 for each j = 1, 2, . . . , n.

Leave each city exactly once:∑
1≤k≤n
k 6=j

xjk = 1 for each j = 1, 2, . . . , n.
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Subtours

The local constraints do not guarantee that we actually find a tour
of all n cities!

Here is a TSP instance with 9 cities; assume that cost is Euclidean
distance.

The optimal tour is shown in red.

The optimal solution to the local constraints is in blue. It has
three subtours that are not connected to each other.
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Subtour elimination constraints

Problem: the local constraints allow for subtours that don’t visit
all n cities.

Solution #1 (Dantzig, Fulkerson, Johnson, 1954): for every
set S of cities, add a constraint saying that the tour leaves S at
least once.

For every S ⊆ {1, 2, . . . , n} with 1 ≤ |S | ≤ n − 1:∑
i∈S

∑
j /∈S

xij ≥ 1.

This will happen for any tour: eventually, we must go from a city
in S to a city not in S .

In a solution to the local constraints with subtours, this is violated
if we take S to be the set of cities in a subtour.
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Huge formulations

Good news: the local constraints, together with the subtour
elimination constraints, describe TSP.

Bad news: for n cities, there are 2n − 2 subtour elimination
constraints! (2n−1 − 1 if we assume 1 ∈ S .)

Slightly encouraging news: given a solution to the local
constraints with subtours, we can quickly find a subtour
elimination constraint it violates.

For example, let S be the set of all cities visited by the tour,
starting at city 1.

If S = {1, 2, . . . , n}, we actually do have a tour.

Otherwise, the constraint saying we must leave S at least
once is violated.



The problem Subtour elimination constraints Timing constraints

Huge formulations

Good news: the local constraints, together with the subtour
elimination constraints, describe TSP.

Bad news: for n cities, there are 2n − 2 subtour elimination
constraints! (2n−1 − 1 if we assume 1 ∈ S .)

Slightly encouraging news: given a solution to the local
constraints with subtours, we can quickly find a subtour
elimination constraint it violates.

For example, let S be the set of all cities visited by the tour,
starting at city 1.

If S = {1, 2, . . . , n}, we actually do have a tour.

Otherwise, the constraint saying we must leave S at least
once is violated.



The problem Subtour elimination constraints Timing constraints

Huge formulations

Good news: the local constraints, together with the subtour
elimination constraints, describe TSP.

Bad news: for n cities, there are 2n − 2 subtour elimination
constraints! (2n−1 − 1 if we assume 1 ∈ S .)

Slightly encouraging news: given a solution to the local
constraints with subtours, we can quickly find a subtour
elimination constraint it violates.

For example, let S be the set of all cities visited by the tour,
starting at city 1.

If S = {1, 2, . . . , n}, we actually do have a tour.

Otherwise, the constraint saying we must leave S at least
once is violated.



The problem Subtour elimination constraints Timing constraints

Huge formulations

Good news: the local constraints, together with the subtour
elimination constraints, describe TSP.

Bad news: for n cities, there are 2n − 2 subtour elimination
constraints! (2n−1 − 1 if we assume 1 ∈ S .)

Slightly encouraging news: given a solution to the local
constraints with subtours, we can quickly find a subtour
elimination constraint it violates.

For example, let S be the set of all cities visited by the tour,
starting at city 1.

If S = {1, 2, . . . , n}, we actually do have a tour.

Otherwise, the constraint saying we must leave S at least
once is violated.



The problem Subtour elimination constraints Timing constraints

Branch-and-cut for TSP

We can use this idea to get a branch-and-cut algorithm for solving
TSP problems.

Begin by just solving the LP relaxation of the local constraints.

Whenever we get an LP solution that has a lower cost than the
best tour found so far:

1 If it’s an integer solution representing a subtour, add the
subtour elimination constraint it violates.

2 If there is some xij /∈ Z, branch on xij = 0 and xij = 1.

(State-of-the-art algorithms sometimes improve on this
option, but it’s complicated.)

3 If it’s an integer solution representing a tour, update our best
solution found!
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Timing constraints

Problem: the local constraints allow for subtours that don’t visit
all n cities.

Solution #2 (Miller, Tucker, Zemlin, 1960): Add variables
representing the times at which a city is visited.

For i = 2, . . . , n, let ti denote the time at which we visit city i ,
with 1 ≤ ti ≤ n − 1. We leave t1 undefined.

We want an inequality to encode the logical implication

if xij = 1, then tj ≥ ti + 1

for every pair of cities i , j 6= 1.
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Why do these work?

How do we know that the timing constraints get rid of subtours?

1 For any tour, we can satisfy the timing constraints.

If we visit cities i1, i2, . . . , in−1 in that order from city 1, set
ti1 = 1, ti2 = 2, . . . , tin−1 = n − 1.

2 If there is a subtour, then we can’t satisfy the timing
constraints.

Suppose xab = xbc = xca = 1 and none of a, b, c are 1.

Then we can’t satisfy the three constraints

tb ≥ ta + 1

tc ≥ tb + 1

ta ≥ tc + 1
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Going from if-statements to inequalities

The statement we want: if xij = 1, then tj ≥ ti + 1.

With the big number method:

tj ≥ ti + 1−M(1− xij)

for some large M.

When xij = 1, this simplifies to tj ≥ ti + 1.

When xij = 0, we get tj ≥ ti + 1−M, which doesn’t restrict
ti , tj .

We can check: if we take M = n, then any actual tour can satisfy
these constraints. The times t2, . . . , tn can be chosen between 1
and n − 1, so tj ≥ ti + 1− n always holds.
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Comparing the methods

At first glance:

DFJ’s formulation has 2n−1 − 1 extra constraints, plus the 2n
local constraints.

MTZ’s formulation has only n2 extra constraints. There are
n− 1 extra variables, which can be integer variables, but don’t
need to be.

In practice:

DFJ’s formulation has an efficient branch-and-cut approach.

MTZ’s formulation is weaker: the feasible region has the same
integer points, but includes more fractional points.
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