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Definitions Vertex cover Traveling salesman problem

Approximate solutions

Integer programming is often really hard, and we’d like to be able
to say “here is a method that is not optimal, but is good enough.”

But what does “good enough” mean?

Some possible definitions, in terms of the optimal value z∗:

“approximation difference of δ”: find a solution with objective
value z such that |z − z∗| < δ.

This doesn’t work well: it’s sensitive to units, and usually not
any easier than finding the optimal solution.

approximation ratio of ρ: find a solution with objective value
z such that 1

ρz
∗ ≤ z ≤ ρz∗.

This is the approach we’ll use!
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Approximation algorithms

Definition

A ρ-approximation algorithm for a problem is an algorithm that
always finds a solution whose objective value is within a factor of ρ
of the optimal objective value.

Today, we’ll look at:

Several 2-approximation algorithms for vertex cover.

This means we find a vertex cover whose size is at most twice
the optimal size.

A 2-approximation algorithm for the traveling salesman
problem.

This means we find a tour whose cost is at most twice the
optimal cost.
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The vertex cover problem

In the vertex cover problem, we are given a graph. We want to
choose the smallest set of vertices S , such that every edge has at
least one endpoint in S .

We saw that for bipartite graphs, this can be solved by solving
a max-flow problem and taking the minimum cut.

For general graphs, the best known exact algorithms take
exponential time.

The greedy algorithm is to add nodes to S until we have a vertex
cover. If we’re clever, we can try to add the node that covers the
most still-uncovered edges. This is not going to find the optimal
solution, but does it get a good approximation?
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Approximation ratios for the greedy algorithm

Answer: No! Even for bipartite graphs, the greedy algorithm can
have an arbitrarily bad approximation ratio.

We will construct a bipartite graph Gn,k as follows:

On one side, a set of vertices A with |A| = n.

On the other side, k − 1 sets of vertices B2,B3, . . . ,Bk with
|Bi | =

⌊
n
i

⌋
. (Let B = B2 ∪ B3 ∪ · · · ∪ Bk .)

For every i , each vertex in A has one edge to Bi , evenly
distributed so that each vertex in Bi gets i or i + 1 edges to A.

There is a vertex cover of size n: take all of A. But we’ll see that
the greedy algorithm finds the vertex cover B instead!
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The construction

Here is the graph G20,5 as an example:

A

In general, Gn,k has n vertices in A and about ( 1
2 + 1

3 + · · ·+ 1
k )n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.



Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2

A

In general, Gn,k has n vertices in A and about ( 1
2 + 1

3 + · · ·+ 1
k )n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.



Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2

A

In general, Gn,k has n vertices in A and about ( 1
2 + 1

3 + · · ·+ 1
k )n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.



Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2 B3

A

In general, Gn,k has n vertices in A and about ( 1
2 + 1

3 + · · ·+ 1
k )n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.



Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2 B3

A

In general, Gn,k has n vertices in A and about ( 1
2 + 1

3 + · · ·+ 1
k )n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.



Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2 B3 B4

A

In general, Gn,k has n vertices in A and about ( 1
2 + 1

3 + · · ·+ 1
k )n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.



Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2 B3 B4

A

In general, Gn,k has n vertices in A and about ( 1
2 + 1

3 + · · ·+ 1
k )n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.



Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2 B3 B4 B5

A

In general, Gn,k has n vertices in A and about ( 1
2 + 1

3 + · · ·+ 1
k )n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.



Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2 B3 B4 B5

A

In general, Gn,k has n vertices in A and about ( 1
2 + 1

3 + · · ·+ 1
k )n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.



Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2 B3 B4 B5

A

In general, Gn,k has n vertices in A and about ( 1
2 + 1

3 + · · ·+ 1
k )n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.



Definitions Vertex cover Traveling salesman problem

The greedy algorithm on Gn,k

B2 B3 B4 B5

A

At first, vertices in Bk look most promising, and they get picked.

But now, each vertex in A can cover one fewer uncovered edge.
They look worse than vertices in Bk−1, so those will be picked next.

This continues; we pick vertices from B at each step.

Eventually, we’ll have picked all of B. The approximation ratio is
1
2 + 1

3 + · · ·+ 1
k , which can be arbitrarily bad.
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Another algorithm

Here’s another, better algorithm:

1 Start by greedily picking a matching M: start with M = ∅,
then as long as there’s an edge e that shares no endpoints
with edges of M, add e to M.

(This is not necessarily the largest matching. But it will be
“maximal”: once we stop, all edges share an endpoint with at
least one edge of M.)

2 Take all 2|M| endpoints of the edges of M to be our vertex
cover.

Any vertex cover needs to contain at least |M| vertices: it needs to
cover all edges in M, and each vertex can only cover one of those
edges. (This bound also follows from weak duality.)

But we’ve only taken 2|M| vertices, so we have a 2-approximation
algorithm!
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Weighted vertex cover

A generalization of this is weighted vertex cover: here, every vertex
i has a weight wi , and we want to choose the vertex cover with the
least total weight.

The integer program for this is:

minimize
x∈Z|V |

∑
i∈V

wixi

subject to xi + xj ≥ 1 for all ij ∈ E

0 ≤ x ≤ 1

Our previous 2-approximation algorithm doesn’t work anymore: if
one endpoint of an edge has weight 1 and the other has weight 99,
then choosing both endpoints is 100 times as bad as choosing one
endpoint!
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LP rounding

Instead, we can use a technique that’s very common in
approximation algorithms.

1 Solve the linear relaxation of this integer program.

2 Round the solution x to an integer solution x′: when xi ≥ 1
2 ,

set x ′i = 1, and when xi <
1
2 , set x ′i = 0.

Why is x′ still a feasible solution? Because if xi + xj ≥ 1, then
either xi ≥ 1

2 or xj ≥ 1
2 (or both), so either x ′i = 1 or x ′j = 1.

How good is this approximation algorithm? We always have
x ′i ≤ 2xi , so the weight of x′ is at most twice the weight of x.
Since x is better than the best integer solution, we have a
2-approximation.
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2 or xj ≥ 1
2 (or both), so either x ′i = 1 or x ′j = 1.

How good is this approximation algorithm? We always have
x ′i ≤ 2xi , so the weight of x′ is at most twice the weight of x.
Since x is better than the best integer solution, we have a
2-approximation.
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Traveling salesman problem

Our final topic: a 2-approximation algorithm for the traveling
salesman problem.

Well, actually, this is a 2-approximation algorithm for metric
TSP: we assume that costs are symmetric (cij = cji ) and obey
the triangle inequality (cij + cjk ≥ cik).

It’s possible to do better and get a 3
2 -approximation: this is

Christofides’s algorithm (also discussed in section 17.2 of PS).

Christofides’s algorithm uses similar ideas, but is a bit more
complicated, so we’ll skip it.

We’ll assume without proving it that it’s possible to quickly
find a minimum-cost spanning tree (it is).
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Spanning trees

Suppose we have the min-cost spanning tree.

We can use it to find
an almost-tour, which will visit some cities multiple times.

The almost-tour has twice the cost of the spanning tree.

The optimal tour contains a spanning tree: delete any edge
and you’ll have n − 1 edges connecting all cities.

So the optimal tour has at least the cost of the min-cost
spanning tree.
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Shortcuts

We have an almost-tour that’s a 2-approximation:

(cost of almost-tour) = 2·(cost of tree) ≤ 2·(cost of optimal tour).

To turn the almost-tour into a tour, we take shortcuts! (This is
where the triangle inequality comes in.)

Taking shortcuts only decreases the total cost. So we end up with
a tour that’s a 2-approximation of the optimal tour.
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