
Definitions Vertex cover Traveling salesman problem

Approximation Algorithms
Math 482, Lecture 36

Misha Lavrov

May 4, 2020

Definitions Vertex cover Traveling salesman problem

Approximate solutions

Integer programming is often really hard, and we’d like to be able
to say “here is a method that is not optimal, but is good enough.”

But what does “good enough” mean?

Some possible definitions, in terms of the optimal value z∗:

“approximation difference of δ”: find a solution with objective
value z such that |z − z∗| < δ.

This doesn’t work well: it’s sensitive to units, and usually not
any easier than finding the optimal solution.

approximation ratio of ρ: find a solution with objective value
z such that 1

ρz
∗ ≤ z ≤ ρz∗.

This is the approach we’ll use!

Definitions Vertex cover Traveling salesman problem

Approximate solutions

Integer programming is often really hard, and we’d like to be able
to say “here is a method that is not optimal, but is good enough.”
But what does “good enough” mean?

Some possible definitions, in terms of the optimal value z∗:

“approximation difference of δ”: find a solution with objective
value z such that |z − z∗| < δ.

This doesn’t work well: it’s sensitive to units, and usually not
any easier than finding the optimal solution.

approximation ratio of ρ: find a solution with objective value
z such that 1

ρz
∗ ≤ z ≤ ρz∗.

This is the approach we’ll use!

Definitions Vertex cover Traveling salesman problem

Approximate solutions

Integer programming is often really hard, and we’d like to be able
to say “here is a method that is not optimal, but is good enough.”
But what does “good enough” mean?

Some possible definitions, in terms of the optimal value z∗:

“approximation difference of δ”: find a solution with objective
value z such that |z − z∗| < δ.

This doesn’t work well: it’s sensitive to units, and usually not
any easier than finding the optimal solution.

approximation ratio of ρ: find a solution with objective value
z such that 1

ρz
∗ ≤ z ≤ ρz∗.

This is the approach we’ll use!

Definitions Vertex cover Traveling salesman problem

Approximate solutions

Integer programming is often really hard, and we’d like to be able
to say “here is a method that is not optimal, but is good enough.”
But what does “good enough” mean?

Some possible definitions, in terms of the optimal value z∗:

“approximation difference of δ”: find a solution with objective
value z such that |z − z∗| < δ.

This doesn’t work well: it’s sensitive to units, and usually not
any easier than finding the optimal solution.

approximation ratio of ρ: find a solution with objective value
z such that 1

ρz
∗ ≤ z ≤ ρz∗.

This is the approach we’ll use!

Definitions Vertex cover Traveling salesman problem

Approximate solutions

Integer programming is often really hard, and we’d like to be able
to say “here is a method that is not optimal, but is good enough.”
But what does “good enough” mean?

Some possible definitions, in terms of the optimal value z∗:

“approximation difference of δ”: find a solution with objective
value z such that |z − z∗| < δ.

This doesn’t work well: it’s sensitive to units, and usually not
any easier than finding the optimal solution.

approximation ratio of ρ: find a solution with objective value
z such that 1

ρz
∗ ≤ z ≤ ρz∗.

This is the approach we’ll use!

Definitions Vertex cover Traveling salesman problem

Approximate solutions

Integer programming is often really hard, and we’d like to be able
to say “here is a method that is not optimal, but is good enough.”
But what does “good enough” mean?

Some possible definitions, in terms of the optimal value z∗:

“approximation difference of δ”: find a solution with objective
value z such that |z − z∗| < δ.

This doesn’t work well: it’s sensitive to units, and usually not
any easier than finding the optimal solution.

approximation ratio of ρ: find a solution with objective value
z such that 1

ρz
∗ ≤ z ≤ ρz∗.

This is the approach we’ll use!

Definitions Vertex cover Traveling salesman problem

Approximation algorithms

Definition

A ρ-approximation algorithm for a problem is an algorithm that
always finds a solution whose objective value is within a factor of ρ
of the optimal objective value.

Today, we’ll look at:

Several 2-approximation algorithms for vertex cover.

This means we find a vertex cover whose size is at most twice
the optimal size.

A 2-approximation algorithm for the traveling salesman
problem.

This means we find a tour whose cost is at most twice the
optimal cost.

Definitions Vertex cover Traveling salesman problem

Approximation algorithms

Definition

A ρ-approximation algorithm for a problem is an algorithm that
always finds a solution whose objective value is within a factor of ρ
of the optimal objective value.

Today, we’ll look at:

Several 2-approximation algorithms for vertex cover.

This means we find a vertex cover whose size is at most twice
the optimal size.

A 2-approximation algorithm for the traveling salesman
problem.

This means we find a tour whose cost is at most twice the
optimal cost.

Definitions Vertex cover Traveling salesman problem

Approximation algorithms

Definition

A ρ-approximation algorithm for a problem is an algorithm that
always finds a solution whose objective value is within a factor of ρ
of the optimal objective value.

Today, we’ll look at:

Several 2-approximation algorithms for vertex cover.

This means we find a vertex cover whose size is at most twice
the optimal size.

A 2-approximation algorithm for the traveling salesman
problem.

This means we find a tour whose cost is at most twice the
optimal cost.

Definitions Vertex cover Traveling salesman problem

Approximation algorithms

Definition

A ρ-approximation algorithm for a problem is an algorithm that
always finds a solution whose objective value is within a factor of ρ
of the optimal objective value.

Today, we’ll look at:

Several 2-approximation algorithms for vertex cover.

This means we find a vertex cover whose size is at most twice
the optimal size.

A 2-approximation algorithm for the traveling salesman
problem.

This means we find a tour whose cost is at most twice the
optimal cost.

Definitions Vertex cover Traveling salesman problem

The vertex cover problem

In the vertex cover problem, we are given a graph. We want to
choose the smallest set of vertices S , such that every edge has at
least one endpoint in S .

We saw that for bipartite graphs, this can be solved by solving
a max-flow problem and taking the minimum cut.

For general graphs, the best known exact algorithms take
exponential time.

The greedy algorithm is to add nodes to S until we have a vertex
cover. If we’re clever, we can try to add the node that covers the
most still-uncovered edges. This is not going to find the optimal
solution, but does it get a good approximation?

Definitions Vertex cover Traveling salesman problem

The vertex cover problem

In the vertex cover problem, we are given a graph. We want to
choose the smallest set of vertices S , such that every edge has at
least one endpoint in S .

We saw that for bipartite graphs, this can be solved by solving
a max-flow problem and taking the minimum cut.

For general graphs, the best known exact algorithms take
exponential time.

The greedy algorithm is to add nodes to S until we have a vertex
cover. If we’re clever, we can try to add the node that covers the
most still-uncovered edges. This is not going to find the optimal
solution, but does it get a good approximation?

Definitions Vertex cover Traveling salesman problem

The vertex cover problem

In the vertex cover problem, we are given a graph. We want to
choose the smallest set of vertices S , such that every edge has at
least one endpoint in S .

We saw that for bipartite graphs, this can be solved by solving
a max-flow problem and taking the minimum cut.

For general graphs, the best known exact algorithms take
exponential time.

The greedy algorithm is to add nodes to S until we have a vertex
cover. If we’re clever, we can try to add the node that covers the
most still-uncovered edges. This is not going to find the optimal
solution, but does it get a good approximation?

Definitions Vertex cover Traveling salesman problem

The vertex cover problem

In the vertex cover problem, we are given a graph. We want to
choose the smallest set of vertices S , such that every edge has at
least one endpoint in S .

We saw that for bipartite graphs, this can be solved by solving
a max-flow problem and taking the minimum cut.

For general graphs, the best known exact algorithms take
exponential time.

The greedy algorithm is to add nodes to S until we have a vertex
cover. If we’re clever, we can try to add the node that covers the
most still-uncovered edges.

This is not going to find the optimal
solution, but does it get a good approximation?

Definitions Vertex cover Traveling salesman problem

The vertex cover problem

In the vertex cover problem, we are given a graph. We want to
choose the smallest set of vertices S , such that every edge has at
least one endpoint in S .

We saw that for bipartite graphs, this can be solved by solving
a max-flow problem and taking the minimum cut.

For general graphs, the best known exact algorithms take
exponential time.

The greedy algorithm is to add nodes to S until we have a vertex
cover. If we’re clever, we can try to add the node that covers the
most still-uncovered edges. This is not going to find the optimal
solution, but does it get a good approximation?

Definitions Vertex cover Traveling salesman problem

Approximation ratios for the greedy algorithm

Answer: No! Even for bipartite graphs, the greedy algorithm can
have an arbitrarily bad approximation ratio.

We will construct a bipartite graph Gn,k as follows:

On one side, a set of vertices A with |A| = n.

On the other side, k − 1 sets of vertices B2,B3, . . . ,Bk with
|Bi | =

⌊
n
i

⌋
. (Let B = B2 ∪ B3 ∪ · · · ∪ Bk .)

For every i , each vertex in A has one edge to Bi , evenly
distributed so that each vertex in Bi gets i or i + 1 edges to A.

There is a vertex cover of size n: take all of A. But we’ll see that
the greedy algorithm finds the vertex cover B instead!

Definitions Vertex cover Traveling salesman problem

Approximation ratios for the greedy algorithm

Answer: No! Even for bipartite graphs, the greedy algorithm can
have an arbitrarily bad approximation ratio.

We will construct a bipartite graph Gn,k as follows:

On one side, a set of vertices A with |A| = n.

On the other side, k − 1 sets of vertices B2,B3, . . . ,Bk with
|Bi | =

⌊
n
i

⌋
. (Let B = B2 ∪ B3 ∪ · · · ∪ Bk .)

For every i , each vertex in A has one edge to Bi , evenly
distributed so that each vertex in Bi gets i or i + 1 edges to A.

There is a vertex cover of size n: take all of A. But we’ll see that
the greedy algorithm finds the vertex cover B instead!

Definitions Vertex cover Traveling salesman problem

Approximation ratios for the greedy algorithm

Answer: No! Even for bipartite graphs, the greedy algorithm can
have an arbitrarily bad approximation ratio.

We will construct a bipartite graph Gn,k as follows:

On one side, a set of vertices A with |A| = n.

On the other side, k − 1 sets of vertices B2,B3, . . . ,Bk with
|Bi | =

⌊
n
i

⌋
. (Let B = B2 ∪ B3 ∪ · · · ∪ Bk .)

For every i , each vertex in A has one edge to Bi , evenly
distributed so that each vertex in Bi gets i or i + 1 edges to A.

There is a vertex cover of size n: take all of A. But we’ll see that
the greedy algorithm finds the vertex cover B instead!

Definitions Vertex cover Traveling salesman problem

Approximation ratios for the greedy algorithm

Answer: No! Even for bipartite graphs, the greedy algorithm can
have an arbitrarily bad approximation ratio.

We will construct a bipartite graph Gn,k as follows:

On one side, a set of vertices A with |A| = n.

On the other side, k − 1 sets of vertices B2,B3, . . . ,Bk with
|Bi | =

⌊
n
i

⌋
. (Let B = B2 ∪ B3 ∪ · · · ∪ Bk .)

For every i , each vertex in A has one edge to Bi , evenly
distributed so that each vertex in Bi gets i or i + 1 edges to A.

There is a vertex cover of size n: take all of A. But we’ll see that
the greedy algorithm finds the vertex cover B instead!

Definitions Vertex cover Traveling salesman problem

Approximation ratios for the greedy algorithm

Answer: No! Even for bipartite graphs, the greedy algorithm can
have an arbitrarily bad approximation ratio.

We will construct a bipartite graph Gn,k as follows:

On one side, a set of vertices A with |A| = n.

On the other side, k − 1 sets of vertices B2,B3, . . . ,Bk with
|Bi | =

⌊
n
i

⌋
. (Let B = B2 ∪ B3 ∪ · · · ∪ Bk .)

For every i , each vertex in A has one edge to Bi , evenly
distributed so that each vertex in Bi gets i or i + 1 edges to A.

There is a vertex cover of size n: take all of A. But we’ll see that
the greedy algorithm finds the vertex cover B instead!

Definitions Vertex cover Traveling salesman problem

Approximation ratios for the greedy algorithm

Answer: No! Even for bipartite graphs, the greedy algorithm can
have an arbitrarily bad approximation ratio.

We will construct a bipartite graph Gn,k as follows:

On one side, a set of vertices A with |A| = n.

On the other side, k − 1 sets of vertices B2,B3, . . . ,Bk with
|Bi | =

⌊
n
i

⌋
. (Let B = B2 ∪ B3 ∪ · · · ∪ Bk .)

For every i , each vertex in A has one edge to Bi , evenly
distributed so that each vertex in Bi gets i or i + 1 edges to A.

There is a vertex cover of size n: take all of A. But we’ll see that
the greedy algorithm finds the vertex cover B instead!

Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

A

In general, Gn,k has n vertices in A and about (1
2 + 1

3 + · · ·+ 1
k)n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.

Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2

A

In general, Gn,k has n vertices in A and about (1
2 + 1

3 + · · ·+ 1
k)n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.

Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2

A

In general, Gn,k has n vertices in A and about (1
2 + 1

3 + · · ·+ 1
k)n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.

Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2 B3

A

In general, Gn,k has n vertices in A and about (1
2 + 1

3 + · · ·+ 1
k)n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.

Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2 B3

A

In general, Gn,k has n vertices in A and about (1
2 + 1

3 + · · ·+ 1
k)n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.

Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2 B3 B4

A

In general, Gn,k has n vertices in A and about (1
2 + 1

3 + · · ·+ 1
k)n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.

Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2 B3 B4

A

In general, Gn,k has n vertices in A and about (1
2 + 1

3 + · · ·+ 1
k)n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.

Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2 B3 B4 B5

A

In general, Gn,k has n vertices in A and about (1
2 + 1

3 + · · ·+ 1
k)n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.

Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2 B3 B4 B5

A

In general, Gn,k has n vertices in A and about (1
2 + 1

3 + · · ·+ 1
k)n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.

Definitions Vertex cover Traveling salesman problem

The construction

Here is the graph G20,5 as an example:

B2 B3 B4 B5

A

In general, Gn,k has n vertices in A and about (1
2 + 1

3 + · · ·+ 1
k)n

vertices in B.

Each vertex in A has k − 1 neighbors. But the vertices in Bk have
k or k + 1 neighbors, so the algorithm will choose them first.

Definitions Vertex cover Traveling salesman problem

The greedy algorithm on Gn,k

B2 B3 B4 B5

A

At first, vertices in Bk look most promising, and they get picked.

But now, each vertex in A can cover one fewer uncovered edge.
They look worse than vertices in Bk−1, so those will be picked next.

This continues; we pick vertices from B at each step.

Eventually, we’ll have picked all of B. The approximation ratio is
1
2 + 1

3 + · · ·+ 1
k , which can be arbitrarily bad.

Definitions Vertex cover Traveling salesman problem

The greedy algorithm on Gn,k

B2 B3 B4 B5

A

At first, vertices in Bk look most promising, and they get picked.

But now, each vertex in A can cover one fewer uncovered edge.
They look worse than vertices in Bk−1, so those will be picked next.

This continues; we pick vertices from B at each step.

Eventually, we’ll have picked all of B. The approximation ratio is
1
2 + 1

3 + · · ·+ 1
k , which can be arbitrarily bad.

Definitions Vertex cover Traveling salesman problem

The greedy algorithm on Gn,k

B2 B3 B4 B5

A

At first, vertices in Bk look most promising, and they get picked.

But now, each vertex in A can cover one fewer uncovered edge.
They look worse than vertices in Bk−1, so those will be picked next.

This continues; we pick vertices from B at each step.

Eventually, we’ll have picked all of B. The approximation ratio is
1
2 + 1

3 + · · ·+ 1
k , which can be arbitrarily bad.

Definitions Vertex cover Traveling salesman problem

The greedy algorithm on Gn,k

B2 B3 B4 B5

A

At first, vertices in Bk look most promising, and they get picked.

But now, each vertex in A can cover one fewer uncovered edge.
They look worse than vertices in Bk−1, so those will be picked next.

This continues; we pick vertices from B at each step.

Eventually, we’ll have picked all of B. The approximation ratio is
1
2 + 1

3 + · · ·+ 1
k , which can be arbitrarily bad.

Definitions Vertex cover Traveling salesman problem

The greedy algorithm on Gn,k

B2 B3 B4 B5

A

At first, vertices in Bk look most promising, and they get picked.

But now, each vertex in A can cover one fewer uncovered edge.
They look worse than vertices in Bk−1, so those will be picked next.

This continues; we pick vertices from B at each step.

Eventually, we’ll have picked all of B. The approximation ratio is
1
2 + 1

3 + · · ·+ 1
k , which can be arbitrarily bad.

Definitions Vertex cover Traveling salesman problem

Another algorithm

Here’s another, better algorithm:

1 Start by greedily picking a matching M: start with M = ∅,
then as long as there’s an edge e that shares no endpoints
with edges of M, add e to M.

(This is not necessarily the largest matching. But it will be
“maximal”: once we stop, all edges share an endpoint with at
least one edge of M.)

2 Take all 2|M| endpoints of the edges of M to be our vertex
cover.

Any vertex cover needs to contain at least |M| vertices: it needs to
cover all edges in M, and each vertex can only cover one of those
edges. (This bound also follows from weak duality.)

But we’ve only taken 2|M| vertices, so we have a 2-approximation
algorithm!

Definitions Vertex cover Traveling salesman problem

Another algorithm

Here’s another, better algorithm:

1 Start by greedily picking a matching M: start with M = ∅,
then as long as there’s an edge e that shares no endpoints
with edges of M, add e to M.

(This is not necessarily the largest matching. But it will be
“maximal”: once we stop, all edges share an endpoint with at
least one edge of M.)

2 Take all 2|M| endpoints of the edges of M to be our vertex
cover.

Any vertex cover needs to contain at least |M| vertices: it needs to
cover all edges in M, and each vertex can only cover one of those
edges. (This bound also follows from weak duality.)

But we’ve only taken 2|M| vertices, so we have a 2-approximation
algorithm!

Definitions Vertex cover Traveling salesman problem

Another algorithm

Here’s another, better algorithm:

1 Start by greedily picking a matching M: start with M = ∅,
then as long as there’s an edge e that shares no endpoints
with edges of M, add e to M.

(This is not necessarily the largest matching. But it will be
“maximal”: once we stop, all edges share an endpoint with at
least one edge of M.)

2 Take all 2|M| endpoints of the edges of M to be our vertex
cover.

Any vertex cover needs to contain at least |M| vertices: it needs to
cover all edges in M, and each vertex can only cover one of those
edges. (This bound also follows from weak duality.)

But we’ve only taken 2|M| vertices, so we have a 2-approximation
algorithm!

Definitions Vertex cover Traveling salesman problem

Another algorithm

Here’s another, better algorithm:

1 Start by greedily picking a matching M: start with M = ∅,
then as long as there’s an edge e that shares no endpoints
with edges of M, add e to M.

(This is not necessarily the largest matching. But it will be
“maximal”: once we stop, all edges share an endpoint with at
least one edge of M.)

2 Take all 2|M| endpoints of the edges of M to be our vertex
cover.

Any vertex cover needs to contain at least |M| vertices: it needs to
cover all edges in M, and each vertex can only cover one of those
edges. (This bound also follows from weak duality.)

But we’ve only taken 2|M| vertices, so we have a 2-approximation
algorithm!

Definitions Vertex cover Traveling salesman problem

Another algorithm

Here’s another, better algorithm:

1 Start by greedily picking a matching M: start with M = ∅,
then as long as there’s an edge e that shares no endpoints
with edges of M, add e to M.

(This is not necessarily the largest matching. But it will be
“maximal”: once we stop, all edges share an endpoint with at
least one edge of M.)

2 Take all 2|M| endpoints of the edges of M to be our vertex
cover.

Any vertex cover needs to contain at least |M| vertices: it needs to
cover all edges in M, and each vertex can only cover one of those
edges. (This bound also follows from weak duality.)

But we’ve only taken 2|M| vertices, so we have a 2-approximation
algorithm!

Definitions Vertex cover Traveling salesman problem

Another algorithm

Here’s another, better algorithm:

1 Start by greedily picking a matching M: start with M = ∅,
then as long as there’s an edge e that shares no endpoints
with edges of M, add e to M.

(This is not necessarily the largest matching. But it will be
“maximal”: once we stop, all edges share an endpoint with at
least one edge of M.)

2 Take all 2|M| endpoints of the edges of M to be our vertex
cover.

Any vertex cover needs to contain at least |M| vertices: it needs to
cover all edges in M, and each vertex can only cover one of those
edges. (This bound also follows from weak duality.)

But we’ve only taken 2|M| vertices, so we have a 2-approximation
algorithm!

Definitions Vertex cover Traveling salesman problem

Weighted vertex cover

A generalization of this is weighted vertex cover: here, every vertex
i has a weight wi , and we want to choose the vertex cover with the
least total weight.

The integer program for this is:

minimize
x∈Z|V |

∑
i∈V

wixi

subject to xi + xj ≥ 1 for all ij ∈ E

0 ≤ x ≤ 1

Our previous 2-approximation algorithm doesn’t work anymore: if
one endpoint of an edge has weight 1 and the other has weight 99,
then choosing both endpoints is 100 times as bad as choosing one
endpoint!

Definitions Vertex cover Traveling salesman problem

Weighted vertex cover

A generalization of this is weighted vertex cover: here, every vertex
i has a weight wi , and we want to choose the vertex cover with the
least total weight.

The integer program for this is:

minimize
x∈Z|V |

∑
i∈V

wixi

subject to xi + xj ≥ 1 for all ij ∈ E

0 ≤ x ≤ 1

Our previous 2-approximation algorithm doesn’t work anymore: if
one endpoint of an edge has weight 1 and the other has weight 99,
then choosing both endpoints is 100 times as bad as choosing one
endpoint!

Definitions Vertex cover Traveling salesman problem

Weighted vertex cover

A generalization of this is weighted vertex cover: here, every vertex
i has a weight wi , and we want to choose the vertex cover with the
least total weight.

The integer program for this is:

minimize
x∈Z|V |

∑
i∈V

wixi

subject to xi + xj ≥ 1 for all ij ∈ E

0 ≤ x ≤ 1

Our previous 2-approximation algorithm doesn’t work anymore: if
one endpoint of an edge has weight 1 and the other has weight 99,
then choosing both endpoints is 100 times as bad as choosing one
endpoint!

Definitions Vertex cover Traveling salesman problem

LP rounding

Instead, we can use a technique that’s very common in
approximation algorithms.

1 Solve the linear relaxation of this integer program.

2 Round the solution x to an integer solution x′: when xi ≥ 1
2 ,

set x ′i = 1, and when xi <
1
2 , set x ′i = 0.

Why is x′ still a feasible solution? Because if xi + xj ≥ 1, then
either xi ≥ 1

2 or xj ≥ 1
2 (or both), so either x ′i = 1 or x ′j = 1.

How good is this approximation algorithm? We always have
x ′i ≤ 2xi , so the weight of x′ is at most twice the weight of x.
Since x is better than the best integer solution, we have a
2-approximation.

Definitions Vertex cover Traveling salesman problem

LP rounding

Instead, we can use a technique that’s very common in
approximation algorithms.

1 Solve the linear relaxation of this integer program.

2 Round the solution x to an integer solution x′: when xi ≥ 1
2 ,

set x ′i = 1, and when xi <
1
2 , set x ′i = 0.

Why is x′ still a feasible solution? Because if xi + xj ≥ 1, then
either xi ≥ 1

2 or xj ≥ 1
2 (or both), so either x ′i = 1 or x ′j = 1.

How good is this approximation algorithm? We always have
x ′i ≤ 2xi , so the weight of x′ is at most twice the weight of x.
Since x is better than the best integer solution, we have a
2-approximation.

Definitions Vertex cover Traveling salesman problem

LP rounding

Instead, we can use a technique that’s very common in
approximation algorithms.

1 Solve the linear relaxation of this integer program.

2 Round the solution x to an integer solution x′: when xi ≥ 1
2 ,

set x ′i = 1, and when xi <
1
2 , set x ′i = 0.

Why is x′ still a feasible solution?

Because if xi + xj ≥ 1, then
either xi ≥ 1

2 or xj ≥ 1
2 (or both), so either x ′i = 1 or x ′j = 1.

How good is this approximation algorithm? We always have
x ′i ≤ 2xi , so the weight of x′ is at most twice the weight of x.
Since x is better than the best integer solution, we have a
2-approximation.

Definitions Vertex cover Traveling salesman problem

LP rounding

Instead, we can use a technique that’s very common in
approximation algorithms.

1 Solve the linear relaxation of this integer program.

2 Round the solution x to an integer solution x′: when xi ≥ 1
2 ,

set x ′i = 1, and when xi <
1
2 , set x ′i = 0.

Why is x′ still a feasible solution? Because if xi + xj ≥ 1, then
either xi ≥ 1

2 or xj ≥ 1
2 (or both), so either x ′i = 1 or x ′j = 1.

How good is this approximation algorithm? We always have
x ′i ≤ 2xi , so the weight of x′ is at most twice the weight of x.
Since x is better than the best integer solution, we have a
2-approximation.

Definitions Vertex cover Traveling salesman problem

LP rounding

Instead, we can use a technique that’s very common in
approximation algorithms.

1 Solve the linear relaxation of this integer program.

2 Round the solution x to an integer solution x′: when xi ≥ 1
2 ,

set x ′i = 1, and when xi <
1
2 , set x ′i = 0.

Why is x′ still a feasible solution? Because if xi + xj ≥ 1, then
either xi ≥ 1

2 or xj ≥ 1
2 (or both), so either x ′i = 1 or x ′j = 1.

How good is this approximation algorithm?

We always have
x ′i ≤ 2xi , so the weight of x′ is at most twice the weight of x.
Since x is better than the best integer solution, we have a
2-approximation.

Definitions Vertex cover Traveling salesman problem

LP rounding

Instead, we can use a technique that’s very common in
approximation algorithms.

1 Solve the linear relaxation of this integer program.

2 Round the solution x to an integer solution x′: when xi ≥ 1
2 ,

set x ′i = 1, and when xi <
1
2 , set x ′i = 0.

Why is x′ still a feasible solution? Because if xi + xj ≥ 1, then
either xi ≥ 1

2 or xj ≥ 1
2 (or both), so either x ′i = 1 or x ′j = 1.

How good is this approximation algorithm? We always have
x ′i ≤ 2xi , so the weight of x′ is at most twice the weight of x.
Since x is better than the best integer solution, we have a
2-approximation.

Definitions Vertex cover Traveling salesman problem

Traveling salesman problem

Our final topic: a 2-approximation algorithm for the traveling
salesman problem.

Well, actually, this is a 2-approximation algorithm for metric
TSP: we assume that costs are symmetric (cij = cji) and obey
the triangle inequality (cij + cjk ≥ cik).

It’s possible to do better and get a 3
2 -approximation: this is

Christofides’s algorithm (also discussed in section 17.2 of PS).

Christofides’s algorithm uses similar ideas, but is a bit more
complicated, so we’ll skip it.

We’ll assume without proving it that it’s possible to quickly
find a minimum-cost spanning tree (it is).

Definitions Vertex cover Traveling salesman problem

Traveling salesman problem

Our final topic: a 2-approximation algorithm for the traveling
salesman problem.

Well, actually, this is a 2-approximation algorithm for metric
TSP: we assume that costs are symmetric (cij = cji) and obey
the triangle inequality (cij + cjk ≥ cik).

It’s possible to do better and get a 3
2 -approximation: this is

Christofides’s algorithm (also discussed in section 17.2 of PS).

Christofides’s algorithm uses similar ideas, but is a bit more
complicated, so we’ll skip it.

We’ll assume without proving it that it’s possible to quickly
find a minimum-cost spanning tree (it is).

Definitions Vertex cover Traveling salesman problem

Traveling salesman problem

Our final topic: a 2-approximation algorithm for the traveling
salesman problem.

Well, actually, this is a 2-approximation algorithm for metric
TSP: we assume that costs are symmetric (cij = cji) and obey
the triangle inequality (cij + cjk ≥ cik).

It’s possible to do better and get a 3
2 -approximation: this is

Christofides’s algorithm (also discussed in section 17.2 of PS).

Christofides’s algorithm uses similar ideas, but is a bit more
complicated, so we’ll skip it.

We’ll assume without proving it that it’s possible to quickly
find a minimum-cost spanning tree (it is).

Definitions Vertex cover Traveling salesman problem

Traveling salesman problem

Our final topic: a 2-approximation algorithm for the traveling
salesman problem.

Well, actually, this is a 2-approximation algorithm for metric
TSP: we assume that costs are symmetric (cij = cji) and obey
the triangle inequality (cij + cjk ≥ cik).

It’s possible to do better and get a 3
2 -approximation: this is

Christofides’s algorithm (also discussed in section 17.2 of PS).

Christofides’s algorithm uses similar ideas, but is a bit more
complicated, so we’ll skip it.

We’ll assume without proving it that it’s possible to quickly
find a minimum-cost spanning tree (it is).

Definitions Vertex cover Traveling salesman problem

Spanning trees

Suppose we have the min-cost spanning tree.

We can use it to find
an almost-tour, which will visit some cities multiple times.

The almost-tour has twice the cost of the spanning tree.

The optimal tour contains a spanning tree: delete any edge
and you’ll have n − 1 edges connecting all cities.

So the optimal tour has at least the cost of the min-cost
spanning tree.

Definitions Vertex cover Traveling salesman problem

Spanning trees

Suppose we have the min-cost spanning tree. We can use it to find
an almost-tour, which will visit some cities multiple times.

The almost-tour has twice the cost of the spanning tree.

The optimal tour contains a spanning tree: delete any edge
and you’ll have n − 1 edges connecting all cities.

So the optimal tour has at least the cost of the min-cost
spanning tree.

Definitions Vertex cover Traveling salesman problem

Spanning trees

Suppose we have the min-cost spanning tree. We can use it to find
an almost-tour, which will visit some cities multiple times.

The almost-tour has twice the cost of the spanning tree.

The optimal tour contains a spanning tree: delete any edge
and you’ll have n − 1 edges connecting all cities.

So the optimal tour has at least the cost of the min-cost
spanning tree.

Definitions Vertex cover Traveling salesman problem

Spanning trees

Suppose we have the min-cost spanning tree. We can use it to find
an almost-tour, which will visit some cities multiple times.

The almost-tour has twice the cost of the spanning tree.

The optimal tour contains a spanning tree: delete any edge
and you’ll have n − 1 edges connecting all cities.

So the optimal tour has at least the cost of the min-cost
spanning tree.

Definitions Vertex cover Traveling salesman problem

Spanning trees

Suppose we have the min-cost spanning tree. We can use it to find
an almost-tour, which will visit some cities multiple times.

The almost-tour has twice the cost of the spanning tree.

The optimal tour contains a spanning tree: delete any edge
and you’ll have n − 1 edges connecting all cities.

So the optimal tour has at least the cost of the min-cost
spanning tree.

Definitions Vertex cover Traveling salesman problem

Spanning trees

Suppose we have the min-cost spanning tree. We can use it to find
an almost-tour, which will visit some cities multiple times.

The almost-tour has twice the cost of the spanning tree.

The optimal tour contains a spanning tree: delete any edge
and you’ll have n − 1 edges connecting all cities.

So the optimal tour has at least the cost of the min-cost
spanning tree.

Definitions Vertex cover Traveling salesman problem

Shortcuts

We have an almost-tour that’s a 2-approximation:

(cost of almost-tour) = 2·(cost of tree) ≤ 2·(cost of optimal tour).

To turn the almost-tour into a tour, we take shortcuts! (This is
where the triangle inequality comes in.)

Taking shortcuts only decreases the total cost. So we end up with
a tour that’s a 2-approximation of the optimal tour.

Definitions Vertex cover Traveling salesman problem

Shortcuts

We have an almost-tour that’s a 2-approximation:

(cost of almost-tour) = 2·(cost of tree) ≤ 2·(cost of optimal tour).

To turn the almost-tour into a tour, we take shortcuts! (This is
where the triangle inequality comes in.)

Taking shortcuts only decreases the total cost. So we end up with
a tour that’s a 2-approximation of the optimal tour.

Definitions Vertex cover Traveling salesman problem

Shortcuts

We have an almost-tour that’s a 2-approximation:

(cost of almost-tour) = 2·(cost of tree) ≤ 2·(cost of optimal tour).

To turn the almost-tour into a tour, we take shortcuts! (This is
where the triangle inequality comes in.)

Taking shortcuts only decreases the total cost. So we end up with
a tour that’s a 2-approximation of the optimal tour.

Definitions Vertex cover Traveling salesman problem

Shortcuts

We have an almost-tour that’s a 2-approximation:

(cost of almost-tour) = 2·(cost of tree) ≤ 2·(cost of optimal tour).

To turn the almost-tour into a tour, we take shortcuts! (This is
where the triangle inequality comes in.)

Taking shortcuts only decreases the total cost. So we end up with
a tour that’s a 2-approximation of the optimal tour.

Definitions Vertex cover Traveling salesman problem

Shortcuts

We have an almost-tour that’s a 2-approximation:

(cost of almost-tour) = 2·(cost of tree) ≤ 2·(cost of optimal tour).

To turn the almost-tour into a tour, we take shortcuts! (This is
where the triangle inequality comes in.)

Taking shortcuts only decreases the total cost. So we end up with
a tour that’s a 2-approximation of the optimal tour.

Definitions Vertex cover Traveling salesman problem

Shortcuts

We have an almost-tour that’s a 2-approximation:

(cost of almost-tour) = 2·(cost of tree) ≤ 2·(cost of optimal tour).

To turn the almost-tour into a tour, we take shortcuts! (This is
where the triangle inequality comes in.)

Taking shortcuts only decreases the total cost. So we end up with
a tour that’s a 2-approximation of the optimal tour.

	Definitions
	Vertex cover
	The greedy algorithm
	Taking both edges
	LP rounding

	Traveling salesman problem

