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1 Positive definite matrices and their cousins

Last time, we reduced the second-derivative test for analyzing a critical point to determining if a
matrix is “positive semidefinite”.

Here are the definitions. We say that a symmetric n× n matrix A is:

• positive semidefinite (written A � 0) if xTAx ≥ 0 for all x, and

• positive definite (written A � 0) if xTAx > 0 for all x 6= 0.

• negative semidefinite (written A � 0) if xTAx ≤ 0 for all x, and

• negative definite (written A ≺ 0) if xTAx < 0 for all x 6= 0.

• indefinite (not written in any particular way) if none of the above apply.

The expression xTAx is a function of x called the quadratic form associated to A. (It’s a quadratic
form because it’s made up of terms like x2i and xixj : quadratic terms in the components of x.)
When the conditions above are met, we can also call the quadratic form positive semidefinite,
positive definite, etc.

We only make these definitions for a symmetric matrix A: one that satisfies AT = A. This isn’t
a problem for us because Hessian matrices (assuming that the second derivatives are continuous,
which we do anyway) are symmetric. Also, every quadratic form xTAx can be written down as
xTBx for some symmetric matrix B.

We know to classify a critical point of a function f : Rn → R as a global minimizer if the Hessian
matrix of f (its matrix of second derivatives) is positive semidefinite everywhere, and as a global
maximizer if the Hessian matrix is negative semidefinite everywhere. If the Hessian matrix is
positive definite or negative definite, the minimizer or maximizer (respectively) is strict.

We don’t yet know how to tell when a matrix has this property, so that’s what we’ll look at
today.

1.1 Easy example: a diagonal matrix

Consider the function f(x, y) = x2 + 2y2. (Not a very exciting function.)

Setting the gradient ∇f(x, y) = (2x, 4y) to 0, we get x = y = 0, so (0, 0) is the only critical point
of f . What kind of critical point is it?

1This document comes from the Math 484 course webpage: https://faculty.math.illinois.edu/~mlavrov/

courses/484-spring-2019.html
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The Hessian matrix of f is

Hf(x, y) =

[
2 0
0 4

]
.

(It’s constant; it does not depend on x and y.) What can we say about it?

Here is a proof that this matrix is positive definite. For an arbitrary x ∈ R2, we have

xT

[
2 0
0 4

]
x = 2x21 + 4x22

which is a sum of squares. We always have x21 ≥ 0 and x22 ≥ 0, so 2x21 + 4x22 ≥ 0. Moreover, the
only way to get 0 is to set x1 = x2 = 0. So for all x 6= 0, 2x21 + 4x22 > 0.

So Hf(x, y) � 0 for all (x, y) ∈ R2, which means 0 is a strict global minimizer.

In general, it’s easy to classify diagonal matrices. For a diagonal matrix

D =


d1 0 . . . 0
0 d2 . . . 0
...

...
. . .

...
0 0 . . . dn


the quadratic form is just d1x

2
1 + d2x

2
2 + · · · + dnx

2
n and so the signs of d1, . . . , dn determine its

behavior:

• If d1, . . . , dn are all nonnegative, then d1x
2
1 + d2x

2
2 + · · ·+ dnx

2
n must be nonnegative for any

x, so D � 0: D is positive semidefinite.

• If, moreover, d1, . . . , dn are all positive, then d1x
2
1 + d2x

2
2 + · · ·+ dnx

2
n can only be 0 if x = 0,

so D � 0: D is positive definite.

• Similarly, if d1, . . . , dn ≤ 0, then D � 0, and if d1, . . . , dn < 0, then D ≺ 0, by the same logic.

• D is indefinite if the signs of d1, . . . , dn are mixed.

2 Using eigenvalues

In general, the matrix A will not be diagonal, so this test does not work immediately. But we can
change to a different basis in which A is represented by a diagonal matrix. For this, we will have
to review some facts about eigenvalues from linear algebra.

For an n× n matrix A, if a nonzero vector x ∈ Rn satisfies Ax = λx for some scalar λ ∈ R, we call
λ an eigenvalue of A and x its associated eigenvector.

When A is symmetric, we are guaranteed good behavior from eigenvalues, summarized by the
following result from linear algebra.
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Theorem 2.1 (Spectral theorem for symmetric matrices). If A is an n×n symmetric matrix, then
it can be factored as

A = QTΛQ = QT


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

Q
where λ1, . . . , λn are the eigenvalues of A and the columns of Q are the corresponding eigenvectors.2

Applying this theorem to the quadratic form xTAx, we get

xTAx = xTQTΛQx = (Qx)TΛ(Qx)

so if we substitute y = Qx (converting to a different basis), the quadratic form becomes diago-
nal:

xTAx = yTΛy = λ1y
2
1 + λ2y

2
2 + · · ·+ λny

2
n.

Now we can classify the matrix A by looking at the eigenvalues of A. This is summarized in the
following theorem:

Theorem 2.2. Let A be a symmetric n× n matrix with eigenvalues λ1, λ2, . . . , λn. Then:

• A � 0 if λ1, λ2, . . . , λn ≥ 0.

• A � 0 if λ1, λ2, . . . , λn > 0.

• A � 0 if λ1, λ2, . . . , λn ≤ 0.

• A ≺ 0 if λ1, λ2, . . . , λn < 0.

• A is indefinite if it has both positive and negative eigenvalues.

Unfortunately, this theorem isn’t terribly easy to apply, because computing eigenvalues is annoying.
The technique is as follows: suppose x is an eigenvector with eigenvalue λ. Then Ax = λx means
that (A − λI)x = 0, so A − λI is singular. We can find λ for which this happens by seeing when
the equation

det(A− λI) = 0

is satisfied.

When A is an n × n matrix, setting det(A − λI) = 0 gives a degree n polynomial which we can
solve to find the eigenvalues. This is hard to do when A is large, and impossible to do exactly for
n ≥ 5; computers, however, are good at finding the eigenvalues approximately.

For us, the eigenvalue test is useful theoretically, but in the next lecture, we will develop a way to
test when A � 0 that involves less scary computation.

2More is true. In fact, the columns of Q can be chosen to be an orthonormal basis of Rn, so that QT = Q−1.
Additionally, the spectral theorem is needed to guarantee the existence of n real eigenvalues, which is not true for
general n× n matrices. But this statement is all that we’ll need.
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3 Saddle points

Here is one immediate application of the eigenvalue test to the problem we’re actually interested
in: classifying critical points of functions.

Theorem 3.1. Let f : Rn → R be a function with continuous Hf , and let x∗ ∈ Rn be a critical
point of f .

If Hf(x∗) is indefinite, then x∗ is neither a local minimizer nor a local maximizer: it is a saddle
point of f .

Proof. Recall some facts from the previous lecture: if we define φu to be a restriction of f to a line
through x∗,

φu(t) = f(x∗ + tu),

then φ′′u can be found using the Hessian matrix of f :

φ′′u(t) = uTHf(x∗ + tu)u.

In particular, φ′′u(0) = uTHf(x∗)u.

Suppose that Hf(x∗) is indefinite: it has both positive and negative eigenvalues.

If we choose u to be an eigenvector of Hf(x∗) with eigenvalue λ > 0, then we have

φ′′u(0) = uTHf(x∗)u = uT(λu) = λ‖u‖2 > 0.

Having φ′′u(0) > 0 tells us that 0 is a strict local minimizer of φu: in other words, x∗ looks like a
strict local minimizer of f when we look in the direction u.

Now choose a different direction v which is also an eigenvector of Hf(x∗), but with eigenvalue
µ < 0. Then we have

φ′′v(0) = vTHf(x∗)v = vT(µv) = µ‖v‖2 < 0.

This tells us that along the direction v, the critical point x∗ doesn’t look like a strict local minimizer,
but rather a strict local maximizer!

This means that x∗ isn’t either kind of point. Arbitrarily close to x∗, we have both points with
larger f -value (when looking in the direction of u) and points with smaller f -value (when looking
in the direction of v).

We call such points saddle points because the center of a saddle has this property: in one direction,
the saddle curves up, and in another direction, the saddle curves down.
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