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1 Sylvester’s criterion

Given an n×n symmetric matrix A with (i, j)-th entry aij = aji, let A(k) denote the k×k submatrix
taken from the top left corner of A. That is,

A(k) =


a11 a12 · · · a1k
a21 a22 · · · a2k
...

...
. . .

...
ak1 ak2 · · · akk

 .
In particular, A(1) = [a11] and A(n) = A.

Let ∆k = det(A(k)). (So ∆n = det(A).)

We’re motivated to look at the determinant of A based on the eigenvalue test. Since

det(A− xI) = (λ1 − x)(λ2 − x) · · · (λn − x),

by setting x = 0 we get det(A) = λ1λ2 · · ·λn. When A � 0, all the eigenvalues are positive, so
det(A) > 0 as well.

We’re motivated to look at the k × k submatrices for a different reason. Suppose we’re looking at
the quadratic form uTAu. If we set uk+1 = uk+2 = · · · = un = 0, then the quadratic form for A
simplifies to the quadratic form for A(k). Therefore we expect A(k) � 0 as well, which means we
must have ∆k > 0 for each k.

Sylvester’s criterion says that actually, this characterizes positive definite matrices:

Theorem 1.1 (Sylvester’s criterion). Let A be an n× n symmetric matrix. Then:

• A � 0 if and only if ∆1 > 0,∆2 > 0, . . . ,∆n > 0.

• A ≺ 0 if and only if (−1)1∆1 > 0, (−1)2∆2 > 0, . . . , (−1)n∆n > 0.

• A is indefinite if the first ∆k that breaks both patterns is the wrong sign.

• Sylvester’s criterion is inconclusive (A can be positive or negative semidefinite, or indefinite)
if the first ∆k that breaks both patterns is 0.

Proof. We prove that having ∆1, . . . ,∆n > 0 guarantees A � 0 by induction on n. For a 1 × 1
matrix A, we have A � 0 ⇐⇒ a11 > 0 ⇐⇒ ∆1 > 0, which is exactly Sylvester’s criterion.

1This document comes from the Math 484 course webpage: https://faculty.math.illinois.edu/~mlavrov/

courses/484-spring-2019.html
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Assume that Sylvester’s criterion works for (n−1)×(n−1) matrices, and that A is an n×n matrix
with ∆1, . . . ,∆n > 0. By the induction hypothesis, A(n−1) is positive definite.

First, we show that A has at most one negative eigenvalue. Suppose not: suppose that A has two
negative eigenvalues. Then their eigenvectors u,v are two independent vectors with uTAu < 0 and
vTAv < 0. The spectral theorem means that they’re orthogonal: u · v = 0. Let w = vnu− unv.

On the one hand, wn = 0, so wTAw is plugging in (w1, w2, . . . , wn−1) into A(n−1)’s quadratic form.
Since A(n−1) � 0, we must have wTAw > 0. On the other hand, wTAw = (vnu− unv)TA(vnu −
unv) simplifies to v2n(uTAu) + u2n(vTAv), so we must have wTAw < 0. This is a contradiction, so
having two negative eigenvalues is impossible.

Having just one negative eigenvalue is also impossible. Then the product λ1λ2 · · ·λn would be a
product of n − 1 positive values and 1 negative value, so det(A) = λ1λ2 · · ·λn < 0. But we know
that det(A) = ∆n > 0. Similarly, A can’t have any zero eigenvalues, since ∆n 6= 0.

Therefore all the eigenvalues are positive, which means A � 0 by the eigenvalue test.

The condition for A ≺ 0 is proven by applying Sylvester’s criterion to −A. Multiplying every entry
in A by −1 has weird effects on determinants. A determinant flips sign if you change the sign of just
one of the rows, so flipping all k rows of A(k) multiplies ∆k by (−1)k. Therefore Sylvester’s criterion
for negative definite matrices asks for ∆1,∆2, . . . to alternate signs, starting from negative.

Suppose Sylvester’s criterion fails because ∆k has the wrong sign: for example, ∆1, . . . ,∆k−1 > 0,
but ∆k < 0. By looking carefully at our inductive proof, we see that this means that A(k) has
exactly one negative eigenvalue. This makes it indefinite, and therefore A is indefinite as well.

However, if Sylvester’s criterion fails because ∆k = 0, that means that one of A(k)’s eigenvalues was
0. This rules out being positive or negative definite, but the matrix might be semidefinite. It also
might not be: later on, we might encounter eigenvalues that are the wrong sign, but we’ll never
know, because we can’t continue the proof. In this case, Sylvester’s criterion is inconclusive.

In theory, some extra work lets us test if a matrix is positive semidefinite. The criterion there,
which we’re not going to prove, is the following.

If I is a subset of {1, 2, . . . , n}, let A(I) be the matrix obtained by taking rows and columns indexed
by elements of i. For example, if I = {1, 3}, then

A(I) =

[
a11 a13
a31 a33

]
.

As before, let ∆I = det(A(I)). Then the matrix A is positive semidefinite if and only if ∆I ≥ 0 for
every subset I.

This is a reasonable test for small matrices. For larger matrices, we quickly run into trouble,
because we’ll need to compute 2n determinants.
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2 Classifying critical points locally

Sylvester’s criterion lets us prove the following result:

Theorem 2.1. Let f : Rn → R be a function with continuous Hf , and let x∗ ∈ Rn be a critical
point of f .

If Hf(x∗) � 0, then x∗ is a strict local minimizer.

If Hf(x∗) ≺ 0, then x∗ is a strict local maximizer.

This adds on to our result from the previous lecture: if Hf(x∗) is indefinite, then x∗ is a saddle
point.

Proof. The missing ingredient provided by Sylvester’s criterion is this: ∆1,∆2, . . . ,∆n are contin-
uous functions of the entries of the matrix. So if each of them is positive for Hf(x∗), then we can
pick a positive radius r > 0 such that each of them is still positive for Hf(x) when ‖x− x∗‖ < r.

As a result, Hf is positive definite everywhere in the open ball B(x∗, r), and therefore x∗ is a strict
minimizer on this ball. This is precisely what it means to be a strict local minimizer.

It is still the case that we don’t know exactly what happens if Hf(x∗) � 0 or Hf(x∗) � 0.
That’s not entirely true: we know a little. If Hf(x∗) has at least one positive eigenvalue, then its
eigenvector is a direction u such that f(x∗ + tu) is strictly minimized at t = 0. So x∗ is a local
minimizer if it’s anything. Similarly, if Hf(x∗) has a negative eigenvalue, then x∗ is either a saddle
point or a local maximizer.

It’s only when Hf(x∗) is the zero matrix that none of these occur, and we can’t predict anything
at all about the point x∗ based on its Hessian matrix. There are examples of this: for example,
the Hessian matrix can’t help us tell that (0, 0) is a local minimizer of x4 + y4, a local maximizer
of −x4 − y4, and a saddle point of x4 − y4.

3 Example of classifying critical points

Consider the two-variable function f(x, y) = x2 + 3y2 + 2xy3.

First, we begin by taking the gradient to find the critical points. We have

∇f(x, y) =

[
2x+ 2y3

6y + 6xy2

]
.

Starting with 6y + 6xy2 seems easier because it factors as 6y(1 + xy): we have either y = 0 or
y = − 1

x .

If y = 0, then the first equation tells us x = 0, so we get the critical point (0, 0). If y = − 1
x , then

we get

2x− 2

x3
= 0 ⇐⇒ x =

1

x3
⇐⇒ x4 = 1 ⇐⇒ x = ±1

so we get two further critical points (1,−1) and (−1, 1).
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Now we must classify them. We have

Hf(x, y) =

[
2 6y2

6y2 12xy + 6

]
.

Therefore

Hf(0, 0) =

[
2 0
0 6

]
, Hf(1,−1) = Hf(−1, 1) =

[
2 6
6 −6

]
.

The first matrix is positive definite because it’s a diagonal matrix and 2, 6 > 0. So (0, 0) is a strict
local minimizer. (Whenever we’re definitely able to tell that a point is a local minimizer by looking
at the Hessian matrix, it’ll be a strict one.)

The second matrix is indefinite: ∆1 = 2 while ∆2 = −48. So (1,−1) and (−1, 1) are both saddle
points.
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