Math 484: Nonlinear Programming¹

Mikhail Lavrov

Chapter 2, Lecture 2: Convex functions

February 6, 2019 University of Illinois at Urbana-Champaign

1 Definition of convex functions

Convex functions $f : \mathbb{R}^n \to \mathbb{R}$ with $Hf(\mathbf{x}) \succeq 0$ for all \mathbf{x} , or functions $f : \mathbb{R} \to \mathbb{R}$ with $f''(x) \ge 0$ for all x, are going to be our model of what we want convex functions to be. But we actually work with a slightly more general definition that doesn't require us to say anything about derivatives.

Let $C \subseteq \mathbb{R}^n$ be a convex set. A function $f : C \to \mathbb{R}$ is convex on C if, for all $\mathbf{x}, \mathbf{y} \in C$, the inequality holds that

$$f(t\mathbf{x} + (1-t)\mathbf{y}) \le tf(\mathbf{x}) + (1-t)f(\mathbf{y}).$$

(We ask for C to be convex so that $t\mathbf{x} + (1-t)\mathbf{y}$ is guaranteed to stay in the domain of f.)

This is easiest to visualize in one dimension:

The point $t\mathbf{x} + (1-t)\mathbf{y}$ is somewhere on the line segment $[\mathbf{x}, \mathbf{y}]$. The left-hand side of the definition, $f(t\mathbf{x} + (1-t)\mathbf{y})$, is just the value of the function at that point: the green curve in the diagram. The right-hand side of the definition, $tf(\mathbf{x}) + (1-t)f(\mathbf{y})$, is the dashed line segment: a straight line that meets f at \mathbf{x} and \mathbf{y} .

So, geometrically, the definition says that secant lines of f always lie above the graph of f.

Although the picture we drew is for a function $\mathbb{R} \to \mathbb{R}$, nothing different happens in higher dimensions, because only points on the line segment $[\mathbf{x}, \mathbf{y}]$ (and f's values at those points) play a role in the inequality. In fact, we can check convexity of f by looking at f's restrictions onto lines:

Lemma 1.1. Let $C \subseteq \mathbb{R}^n$ be a convex set. A function $f : C \to \mathbb{R}$ is convex if and only if, for all $\mathbf{x} \in C$ and $\mathbf{u} \in \mathbb{R}^n$, the function

$$\phi(t) = f(\mathbf{x} + t\mathbf{u})$$

is a 1-variable convex function in t. (The domain of ϕ is the set of t for which $\mathbf{x} + t\mathbf{u} \in C$.)

Proof. The condition

$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \le \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y})$$

¹This document comes from the Math 484 course webpage: https://faculty.math.illinois.edu/~mlavrov/ courses/484-spring-2019.html

can be checked for f by checking the condition

$$\phi(\lambda \cdot 0 + (1 - \lambda) \cdot 1) \le \lambda \phi(0) + (1 - \lambda)\phi(1)$$

for the restriction $\phi(t) = f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})).$

The nice thing about the "secant line" definition of convex functions is that

- All the nice things we've said about functions with $Hf(\mathbf{x}) \succeq 0$, and more, still hold for convex functions in general.
- But we don't have to deal with derivatives to prove them.

For example, we can show the following result.

Theorem 1.1. If $C \subseteq \mathbb{R}^n$ is a convex set, $f : C \to \mathbb{R}$ is a convex function, and $\mathbf{x}^* \in C$ is a local minimizer of f, then it is a global minimizer.

Proof. Let's first prove this for convex functions $f : [a, b] \to \mathbb{R}$.

In this case, suppose $x^* \in [a, b]$ is a local minimizer of f: there's some interval $(x^* - r, x^* + r)$ where f stays above $f(x^*)$.

Here's the geometric argument. For any other point $y \in [a, b]$, draw the secant line through $(x^*, f(x^*))$ and (y, f(y)). As that secant line passes over either $x^* + \frac{r}{2}$ or $x^* - \frac{r}{2}$, it lies above the graph of f: above $f(x^* \pm \frac{r}{2})$, which is bigger than $f(x^*)$. So the secant line has gone up from $f(x^*)$, which means it has a nonnegative slope. This can only happen if $f(y) \ge f(x^*)$.

Algebraically: given $y \in [a, b]$, choose t > 0 small enough that

$$x^* + t(y - x^*) \in (x^* - r, x^* + r).$$

That is, choose t smaller than $\frac{|y-x^*|}{r}$. Also, make sure that $t \leq 1$, as required by the definition of a convex function.

By the property of being a local minimizer,

$$f(x^*) \le f(x^* + t(y - x^*)) = f((1 - t)x^* + ty) \le (1 - t)f(x^*) + tf(y) tf(x^*) \le tf(y) f(x^*) \le f(y).$$

The result holds in \mathbb{R}^n by applying Lemma 1.1: if f is convex, so is the restriction of f to any line through \mathbf{x}^* , so \mathbf{x}^* is the global minimizer along any such line, and this makes it the global minimizer on the entire domain of f.

2 Derivatives

We can take the secant-line definition of convex functions and use it to say things about convex functions that *do* have first and second derivatives. We can get back our original definition this way. Along the way, we'll also get a first-derivative condition on convex functions.

We'll stick to the one-dimensional case here: as before, we can use Lemma 1.1 to get similar results for higher-dimensional functions.

2.1 First derivatives

Among functions with continuous first derivatives, convex functions are those which satisfy the tangent line condition. Geometrically, this condition says that f is convex if and only if tangent lines to f are always lower bounds on f:

Algebraically, the statement is as follows:

Theorem 2.1 (Theorem 2.3.5). Suppose that $f : (a,b) \to \mathbb{R}$ is a function such that f'(x) is continuous on (a,b). Then f is convex if and only if

$$f(y) \ge f(x) + f'(x)(y - x)$$

for all $x, y \in (a, b)$. For functions $f : C \to \mathbb{R}$ with $C \subseteq \mathbb{R}^n$, this becomes

$$f(\mathbf{y}) \ge f(\mathbf{x}) + \nabla f(\mathbf{x}) \cdot (\mathbf{y} - \mathbf{x}).$$

Proof. First, we will assume f is convex and try to prove the inequality. Take any $x, y \in (a, b)$, and assume $x \neq y$ because otherwise the inequality is already satisfied: it just says $f(x) \geq f(x)$. We have

$$f((1-t)x + ty) \le (1-t)f(x) + tf(y)$$

whenever $0 \le t \le 1$, which we can rewrite as

$$\begin{aligned} f(x + t(y - x)) &\leq (1 - t)f(x) + tf(y) \implies f(x + t(y - x)) - f(x) \leq tf(y) - tf(x) \\ \implies \frac{f(x + t(y - x)) - f(x)}{t(y - x)} \cdot (y - x) \leq f(y) - f(x). \end{aligned}$$

If we take the limit as $t \to 0$, then $t(y - x) \to 0$ as well, which means the left-hand side of this inequality approaches $f'(x) \cdot (y - x)$. The right-hand side does not depend on t, so it remains the same, and we get

$$f'(x) \cdot (y-x) \le f(y) - f(x) \implies f(y) \ge f(x) + f'(x)(y-x).$$

Next, we will assume that the inequality holds, and try to prove that f is convex. Let $u, v \in [a, b]$ and let w = tu + (1 - t)v with $0 \le t \le 1$. Then we have

$$f(u) \ge f(w) + f'(w)(u - w)$$
 and $f(v) \ge f(w) + f'(w)(v - w)$

so if we add t times the first inequality and (1-t) times the second inequality, we get

$$tf(u) + (1-t)f(v) \ge tf(w) + (1-t)f(w) + f'(w)(tu - tw + (1-t)v - (1-t)w)$$

= f(w) + f'(w)(tu + (1-t)v - w)
= f(w) + f'(w)(w - w) = f(w)

and since w = tu + (1 - t)v, this is exactly the inequality

$$tf(u) + (1-t)f(v) \ge f(tu + (1-t)v)$$

that proves that f is convex.

2.2 Second derivatives

Theorem 2.2. Suppose that $f : (a,b) \to \mathbb{R}$ has a continuous second derivative on (a,b). If $f''(x) \ge 0$ for all $x \in (a,b)$, then f is convex on (a,b).

In higher dimensions, this turns into the condition $Hf(\mathbf{x}) \succeq 0$.

Proof. Here, we use the second-order Taylor series approximation to f: given $x, y \in C$, there is some $\xi \in [x, y]$ such that

$$f(y) = f(x) + f'(x)(y - x) + f''(\xi)\frac{(y - x)^2}{2}.$$

By using the previous theorem, we can take a shortcut here. If $f''(\xi) \ge 0$, then we get the inequality

$$f(y) \ge f(x) + f'(x)(y - x)$$

and we know that having this inequality for all x, y makes f convex.