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1 Definition of convex functions

Convex functions f : Rn → R with Hf(x) � 0 for all x, or functions f : R→ R with f ′′(x) ≥ 0 for
all x, are going to be our model of what we want convex functions to be. But we actually work with
a slightly more general definition that doesn’t require us to say anything about derivatives.

Let C ⊆ Rn be a convex set. A function f : C → R is convex on C if, for all x,y ∈ C, the inequality
holds that

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y).

(We ask for C to be convex so that tx + (1− t)y is guaranteed to stay in the domain of f .)

This is easiest to visualize in one dimension:

x1 x2

The point tx+(1− t)y is somewhere on the line segment [x,y]. The left-hand side of the definition,
f(tx + (1 − t)y), is just the value of the function at that point: the green curve in the diagram.
The right-hand side of the definition, tf(x) + (1 − t)f(y), is the dashed line segment: a straight
line that meets f at x and y.

So, geometrically, the definition says that secant lines of f always lie above the graph of f .

Although the picture we drew is for a function R→ R, nothing different happens in higher dimen-
sions, because only points on the line segment [x,y] (and f ’s values at those points) play a role in
the inequality. In fact, we can check convexity of f by looking at f ’s restrictions onto lines:

Lemma 1.1. Let C ⊆ Rn be a convex set. A function f : C → R is convex if and only if, for all
x ∈ C and u ∈ Rn, the function

φ(t) = f(x + tu)

is a 1-variable convex function in t. (The domain of φ is the set of t for which x + tu ∈ C.)

Proof. The condition
f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)
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can be checked for f by checking the condition

φ(λ · 0 + (1− λ) · 1) ≤ λφ(0) + (1− λ)φ(1)

for the restriction φ(t) = f(x + t(y − x)).

The nice thing about the “secant line” definition of convex functions is that

• All the nice things we’ve said about functions with Hf(x) � 0, and more, still hold for convex
functions in general.

• But we don’t have to deal with derivatives to prove them.

For example, we can show the following result.

Theorem 1.1. If C ⊆ Rn is a convex set, f : C → R is a convex function, and x∗ ∈ C is a local
minimizer of f , then it is a global minimizer.

Proof. Let’s first prove this for convex functions f : [a, b]→ R.

In this case, suppose x∗ ∈ [a, b] is a local minimizer of f : there’s some interval (x∗−r, x∗+r) where
f stays above f(x∗).

Here’s the geometric argument. For any other point y ∈ [a, b], draw the secant line through
(x∗, f(x∗)) and (y, f(y)). As that secant line passes over either x∗ + r

2 or x∗ − r
2 , it lies above the

graph of f : above f(x∗± r
2), which is bigger than f(x∗). So the secant line has gone up from f(x∗),

which means it has a nonnegative slope. This can only happen if f(y) ≥ f(x∗).

Algebraically: given y ∈ [a, b], choose t > 0 small enough that

x∗ + t(y − x∗) ∈ (x∗ − r, x∗ + r).

That is, choose t smaller than |y−x
∗|

r . Also, make sure that t ≤ 1, as required by the definition of
a convex function.

By the property of being a local minimizer,

f(x∗) ≤ f(x∗ + t(y − x∗))
= f((1− t)x∗ + ty)

≤ (1− t)f(x∗) + tf(y)

tf(x∗) ≤ tf(y)

f(x∗) ≤ f(y).

The result holds in Rn by applying Lemma 1.1: if f is convex, so is the restriction of f to any
line through x∗, so x∗ is the global minimizer along any such line, and this makes it the global
minimizer on the entire domain of f .
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2 Derivatives

We can take the secant-line definition of convex functions and use it to say things about convex
functions that do have first and second derivatives. We can get back our original definition this
way. Along the way, we’ll also get a first-derivative condition on convex functions.

We’ll stick to the one-dimensional case here: as before, we can use Lemma 1.1 to get similar results
for higher-dimensional functions.

2.1 First derivatives

Among functions with continuous first derivatives, convex functions are those which satisfy the
tangent line condition. Geometrically, this condition says that f is convex if and only if tangent
lines to f are always lower bounds on f :

x y

f(y)

f(x) + f ′(x)(y − x)

Algebraically, the statement is as follows:

Theorem 2.1 (Theorem 2.3.5). Suppose that f : (a, b) → R is a function such that f ′(x) is
continuous on (a, b). Then f is convex if and only if

f(y) ≥ f(x) + f ′(x)(y − x)

for all x, y ∈ (a, b). For functions f : C → R with C ⊆ Rn, this becomes

f(y) ≥ f(x) +∇f(x) · (y − x).

Proof. First, we will assume f is convex and try to prove the inequality. Take any x, y ∈ (a, b), and
assume x 6= y because otherwise the inequality is already satisfied: it just says f(x) ≥ f(x). We
have

f((1− t)x+ ty) ≤ (1− t)f(x) + tf(y)

whenever 0 ≤ t ≤ 1, which we can rewrite as

f(x+ t(y − x)) ≤ (1− t)f(x) + tf(y) =⇒ f(x+ t(y − x))− f(x) ≤ tf(y)− tf(x)

=⇒ f(x+ t(y − x))− f(x)

t(y − x)
· (y − x) ≤ f(y)− f(x).

If we take the limit as t → 0, then t(y − x) → 0 as well, which means the left-hand side of this
inequality approaches f ′(x) · (y − x). The right-hand side does not depend on t, so it remains the
same, and we get

f ′(x) · (y − x) ≤ f(y)− f(x) =⇒ f(y) ≥ f(x) + f ′(x)(y − x).
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Next, we will assume that the inequality holds, and try to prove that f is convex.

Let u, v ∈ [a, b] and let w = tu+ (1− t)v with 0 ≤ t ≤ 1. Then we have

f(u) ≥ f(w) + f ′(w)(u− w) and f(v) ≥ f(w) + f ′(w)(v − w)

so if we add t times the first inequality and (1− t) times the second inequality, we get

tf(u) + (1− t)f(v) ≥ tf(w) + (1− t)f(w) + f ′(w)(tu− tw + (1− t)v − (1− t)w)

= f(w) + f ′(w)(tu+ (1− t)v − w)

= f(w) + f ′(w)(w − w) = f(w)

and since w = tu+ (1− t)v, this is exactly the inequality

tf(u) + (1− t)f(v) ≥ f(tu+ (1− t)v)

that proves that f is convex.

2.2 Second derivatives

Theorem 2.2. Suppose that f : (a, b) → R has a continuous second derivative on (a, b). If
f ′′(x) ≥ 0 for all x ∈ (a, b), then f is convex on (a, b).

In higher dimensions, this turns into the condition Hf(x) � 0.

Proof. Here, we use the second-order Taylor series approximation to f : given x, y ∈ C, there is
some ξ ∈ [x, y] such that

f(y) = f(x) + f ′(x)(y − x) + f ′′(ξ)
(y − x)2

2
.

By using the previous theorem, we can take a shortcut here. If f ′′(ξ) ≥ 0, then we get the inequality

f(y) ≥ f(x) + f ′(x)(y − x)

and we know that having this inequality for all x, y makes f convex.
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