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1 Jensen’s inequality

Jensen’s inequality—one of the most useful inequalities that ever inequalitied—is the result be-
low:

Theorem 1.1. For any λ1, λ2, . . . , λk ≥ 0 with λ1 + λ2 + · · ·+ λk = 1, if f : C → R is convex and
x(1), . . . ,x(k) ∈ C, then

f(λ1x
(1) + λ2x

(2) + · · ·+ λkx
(k)) ≤ λ1f(x(1)) + λ2f(x(2)) + · · ·+ λkf(x(k)).

This might seem very similar to the property of convex sets we proved in the previous lecture: that
a convex combination of points in a convex set C is still an element of C. It is! It is so similar,
in fact, that we can take a shortcut and get this theorem as a corollary of the theorem from the
last lecture. (For the non-shortcut proof, which is essentially a rehash of the proof of the previous
theorem, see your textbook.)

We’ll need a definition first. Given a subset C ⊆ Rn and a function f : C → R, its epigraph is the
set

epi(f) = {(x, y) ∈ C × R : y ≥ f(x)}.

The prefix “epi” means “above”, so “epigraph” means “above the graph”, and this is just what
the epigraph is: it’s the subset of Rn+1 (one dimension higher, because we’re graphing) above the
graph of f .

The key relationship between convex functions and convex sets is that the function f is a convex
function if and only if its epigraph epi(f) is a convex set. I will not prove this, but essentially
the definition of a convex function checks the “hardest case” of convexity of epi(f). This is the
case where we pick two points on the boundary of the epigraph, a.k.a. the graph of f itself.

Now, to prove the theorem.

Proof. For each of the points x(1), . . . ,x(k), there is a corresponding point in C × R: the points
(x(1), f(x(1))) through (x(k), f(x(k))). These are points on the graph of f ,and therefore in epi(f).

Because epi(f) is a convex set, their convex combination with weights λ1, . . . , λk is still in epi(f).
That is,

λ1

[
x(1)

f(x(1))

]
+ · · ·+ λk

[
x(k)

f(x(k))

]
∈ epi(f).
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That is, [
λ1x

(1) + · · ·+ λkx
(k)

λ1f(x(1)) + · · ·+ λkf(x(k))

]
∈ epi(f).

What does it mean for this point to be in epi(f)? It means that its y-coordinate is above the value
of f at its x-coordinate. Therefore

f(λ1x
(1) + λ2x

(2) + · · ·+ λkx
(k)) ≤ λ1f(x(1)) + λ2f(x(2)) + · · ·+ λkf(x(k)),

which is the inequality that we wanted.

Jensen’s inequality can be sharpened. If f : C → R is strictly convex, and λ1, λ2, . . . , λk > 0, then
the only way to get the equation

f(λ1x
(1) + λ2x

(2) + · · ·+ λkx
(k)) = λ1f(x(1)) + λ2f(x(2)) + · · ·+ λkf(x(k))

is by setting x(1) = x(2) = · · · = x(n). This is hard to prove via the epigraph approach, but if you
write an induction proof similar to the one we wrote for convex combinations, then it falls out of
the definition.

2 Applications of Jensen’s inequality

Jensen’s inequality—even applied to simple, one-dimensional convex functions—is useful for solving
optimization problems in one simple step.

Taking the weights λ1 = · · · = λk = 1
k , Jensen’s inequality says that

1

k
f(x1) + · · ·+ 1

k
f(xk) ≥ f(

1

k
x1 + · · ·+ 1

k
xk),

or

f(x1) + · · ·+ f(xk) ≥ k · f
(
x1 + · · ·+ xk

k

)
.

In other words, if x1 +x2 + · · ·+xk is fixed and f : R→ R is convex, then the sum f(x1) + f(x2) +
· · · + f(xk) is minimized by setting x1, . . . , xk all equal to their average. (If f is strictly convex,
then this is the unique minimizer.)

2.1 Classic calculus problem

Given 100 feet of fencing, what is the largest rectangular region we can enclose?

Let x1 be the height and x2 the width. We are given 2x1 + 2x2 = 100, or x1 + x2 = 50.

We want to maximize x1x2, which does not look like Jensen’s inequality. But it’s equivalent to
minimize − log(x1x2) = − log(x1) +− log(x2).

Since f(x) = − log x is convex, f(x1) + f(x2) is minimized when we take x1 = x2 = 25, giving an
area of x1x2 = 625.
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2.2 Standard combinatorics problem

The integers 1, 2, . . . , 100 are colored by 10 colors. At least how many pairs {a, b} ⊆ {1, 2, . . . , 100}
have the same color?

Let x1, x2, . . . , x10 be the number of integers that get color 1, 2, . . . , 10. We are given x1 + x2 +
· · ·+ x10 = 100, since all integers get a color.

If color i has xi integers, there are
(
xi
2

)
= xi(xi−1)

2 pairs of integers that both have color i. So we
are trying to minimize (

x1
2

)
+ · · ·+

(
x10
2

)
.

Since f(x) =
(
x
2

)
is a convex function, this is minimized when x1 = x2 = · · · = x10 = 10. In this

case, we have
(
10
2

)
= 45 pairs of the same color for each color, and 450 pairs total.

2.3 Indian Math Olympiad, 1995

As an unexpected bonus, Jensen’s inequality is useful for high school math competitions.

The problem was this: prove that if x1, x2, . . . , xn > 0 and x1 + x2 + · · ·+ xn = 1, then

x1√
1− x1

+
x2√

1− x2
+ · · ·+ xn√

1− xn
≥
√

n

n− 1
.

First, we check that f(t) = t√
1−t is convex. It’s easier to check g(t) = f(1 − t) = 1−t√

t
because

g(t) = 1√
t
− t√

t
= t−1/2 + (−t1/2), and both terms are convex. Since g(t) is convex, f(t) = g(1− t)

is convex by the second composition-of-convex-functions result we proved.

Now, by Jensen’s inequality with weights λ1 = · · · = λn = 1
n , we have

1

n

(
x1√

1− x1
+

x2√
1− x2

+ · · ·+ xn√
1− xn

)
≥ f

(
x1 + x2 + · · ·+ xn

n

)
= f

(
1

n

)
=

1/n√
1− 1/n

which simplifies to the inequality we wanted.

2.4 The AM-GM inequality

The first example we did can be generalized to a result called the AM-GM (Arithmetic Mean-
Geometric Mean) inequality. It states the following:

Theorem 2.1 (AM-GM inequality). For any x1, x2, . . . , xn ≥ 0,

x1 + x2 + · · ·+ xn
n

≥ n
√
x1x2 · · ·xn

with equality only if x1 = x2 = · · · = xn.

It also has a weighted form:
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Theorem 2.2 (Weighted AM-GM inequality). For any x1, x2, . . . , xn ≥ 0 and for any weights
δ1, δ2, . . . , δn > 0 with δ1 + δ2 + · · ·+ δn = 1,

δ1x1 + δ2x2 + · · ·+ δnxn ≥ xδ11 x
δ2
2 · · ·x

δn
n

with equality only if x1 = x2 = · · · = xn.

As before, let f(t) = − ln t: this is a strictly convex function on (0,∞), since f ′′(t) = 1
t2
> 0 for all

t. Jensen’s inequality says that

f(δ1x1 + δ2x2 + · · ·+ δnxn) ≤ δ1f(x1) + δ2f(x2) + · · ·+ δnf(xn).

When x1, x2, . . . , xn are not all equal, because f is strictly convex, we get a > in this inequality.
That’s where the equality condition of AM-GM comes from.

Now let’s try to simplify this inequality a bit. Once we replace f by its definition, we get

− ln(δ1x1 + δ2x2 + · · ·+ δnxn) ≤ −δ1 lnx1 − δ2 lnx2 − · · · − δn lnxn

and we can negate both sides to reverse the inequality:

ln(δ1x1 + δ2x2 + · · ·+ δnxn) ≥ δ1 lnx1 + δ2 lnx2 + · · ·+ δn lnxn.

Now get rid of the ln by applying ex to both sides:

δ1x1 + δ2x2 + · · ·+ δnxn ≥ eδ1 lnx1+δ2 lnx2+···+δn lnxn

= eδ1 lnx1eδ2 lnx2 · · · eδn lnxn

= xδ11 x
δ2
2 · · ·x

δn
n .

This gives us the weighted AM-GM inequality.

(A minor note: f is convex on (0,∞) and not even defined at 0, but we stated AM-GM for
x1, x2, . . . , xn ≥ 0. Is this a problem? It’s easily fixed: when xi = 0 for any i, then xδ11 x

δ2
2 · · ·xδnn

immediately becomes 0. On the other side, the arithmetic mean remains nonnegative, and it’s
strictly positive unless x1 = x2 = · · · = xn = 0. So we’re still good.)
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