Math 484: Nonlinear Programming ¹	Mikhail Lavrov
Chapter 2, Lecture 6: Geometric programming	
February 15, 2019 University of L	Illinois at Urbana-Champaign

1 Unconstrained geometric programs

Unconstrained programs are a generalization of the final example problem from the previous lecture, where we wanted to minimize $f(x, y) = 2xy + \frac{y}{x^2} + \frac{3x}{y}$ for x, y > 0.

Define a *posynomial term* in variables t_1, t_2, \ldots, t_m to be a function of the form

$$Ct_1^{\alpha_1}t_2^{\alpha_2}\cdots t_m^{\alpha_m}$$

where $\alpha_1, \alpha_2, \ldots, \alpha_m$ are real powers (not necessarily integers, and not necessarily positive), and C > 0 is a positive real constant.

A *posynomial* is just a sum of such posynomial terms. These are supposed to be analogous to polynomials: we generalize polynomials by allowing arbitrary powers, but add the restriction that all coefficients must be positive (hence the prefix "pos-").

An unconstrained geometric program (GP) is the problem of minimizing a posynomial over all positive real inputs. Formally, the problem is

$$\begin{array}{ll} \underset{\mathbf{t}\in\mathbb{R}^m}{\text{minimize}} & g(t) = \operatorname{Term}_1(\mathbf{t}) + \operatorname{Term}_2(\mathbf{t}) + \dots + \operatorname{Term}_n(\mathbf{t}) \\ \text{subject to} & t_1, t_2, \dots, t_m > 0 \end{array}$$

where for $1 \leq i \leq n$, $\operatorname{Term}_i(\mathbf{t})$ is a posynomial term

$$\operatorname{Term}_{i}(\mathbf{t}) = C_{i} t_{1}^{\alpha_{i1}} t_{2}^{\alpha_{i2}} \cdots t_{m}^{\alpha_{im}}.$$

For example, when minimizing $f(x, y) = 2xy + \frac{y}{x^2} + \frac{3x}{y}$, $\text{Term}_1(x, y) = 2x^1y^1$, $\text{Term}_2(x, y) = x^{-2}y^1$, and $\text{Term}_3(x, y) = 3x^1y^{-1}$.

These are called geometric programs because we plan to use the AM-GM inequality to solve them. We will choose weights $\delta_1, \delta_2, \ldots, \delta_n > 0$ with $\delta_1 + \delta_2 + \cdots + \delta_n = 1$ and then use the inequality

$$\operatorname{Term}_{1}(\mathbf{t}) + \operatorname{Term}_{2}(\mathbf{t}) + \dots + \operatorname{Term}_{n}(\mathbf{t}) = \delta_{1} \cdot \frac{\operatorname{Term}_{1}(\mathbf{t})}{\delta_{1}} + \delta_{2} \cdot \frac{\operatorname{Term}_{2}(\mathbf{t})}{\delta_{2}} + \dots + \delta_{n} \cdot \frac{\operatorname{Term}_{n}(\mathbf{t})}{\delta_{n}}$$
$$\geq \left(\frac{\operatorname{Term}_{1}(\mathbf{t})}{\delta_{1}}\right)^{\delta_{1}} \left(\frac{\operatorname{Term}_{2}(\mathbf{t})}{\delta_{2}}\right)^{\delta_{2}} \cdots \left(\frac{\operatorname{Term}_{n}(\mathbf{t})}{\delta_{n}}\right)^{\delta_{n}}$$

to obtain a lower bound on $g(\mathbf{t})$.

¹This document comes from the Math 484 course webpage: https://faculty.math.illinois.edu/~mlavrov/ courses/484-spring-2019.html

2 The dual of the unconstrained GP

Not all weights $\delta_1, \delta_2, \ldots, \delta_n$ will work, of course. In the case of an unconstrained GP, the only time that this inequality actually gives us a lower bound on $g(\mathbf{t})$ is when the powers of t_1, t_2, \ldots, t_n cancel and we get a constant on the right-hand side of the AM-GM inequality.

What do we need for that to happen? Consider a general upper bound on $f(x,y) = 2xy + \frac{y}{x^2} + \frac{3x}{y}$: we have

$$f(x,y) \ge \left(\frac{2xy}{\delta_1}\right)^{\delta_1} \left(\frac{y/x^2}{\delta_2}\right)^{\delta_2} \left(\frac{3x/y}{\delta_3}\right)^{\delta_3}$$

where x appears to the power $\delta_1 - 2\delta_2 + \delta_3$ and y appears to the power $\delta_1 + \delta_2 - \delta_3$. To get a constant lower bound, we need to choose values of δ_1 , δ_2 , and δ_3 satisfying

$\delta_1 - 2\delta_2 + \delta_3 = 0,$	(power of x)
$\delta_1 + \delta_2 - \delta_3 = 0,$	(power of y)
$\delta_1 + \delta_2 + \delta_3 = 1,$	(AM-GM requirement)
$\delta_1, \delta_2, \delta_3 > 0.$	(AM-GM requirement)

In general, the lower bound contains the variable t_i raised to the power $\delta_1 \alpha_{1i} + \delta_2 \alpha_{2i} + \cdots + \delta_n \alpha_{ni}$ and we get m + 1 equations: one from the AM-GM requirement and m from each of the variables t_1, \ldots, t_m .

In the example problem, there is only one solution to the system of equations in δ . But in general, there could be many solutions. In such a case, it makes sense to pick the best lower bound.

Assuming that the powers of t_1, t_2, \ldots, t_m all cancel, we can simplify the lower bound:

$$g(\mathbf{t}) \geq \left(\frac{\operatorname{Term}_1(\mathbf{t})}{\delta_1}\right)^{\delta_1} \left(\frac{\operatorname{Term}_2(\mathbf{t})}{\delta_2}\right)^{\delta_2} \cdots \left(\frac{\operatorname{Term}_n(\mathbf{t})}{\delta_n}\right)^{\delta_n} = \left(\frac{C_1}{\delta_1}\right)^{\delta_1} \left(\frac{C_2}{\delta_2}\right)^{\delta_2} \cdots \left(\frac{C_n}{\delta_n}\right)^{\delta_n}.$$

So the problem of picking the best lower bound we can itself becomes an optimization problem, called the *dual geometric program*:

$$\begin{array}{ll} \underset{\boldsymbol{\delta} \in \mathbb{R}^{n}}{\text{maximize}} & v(\boldsymbol{\delta}) = \left(\frac{C_{1}}{\delta_{1}}\right)^{\delta_{1}} \left(\frac{C_{2}}{\delta_{2}}\right)^{\delta_{2}} \cdots \left(\frac{C_{n}}{\delta_{n}}\right)^{\delta_{n}} \\ \text{subject to} & \delta_{1}\alpha_{11} + \delta_{2}\alpha_{21} + \cdots + \delta_{n}\alpha_{n1} = 0, \qquad \text{(power of } t_{1}) \\ & \delta_{1}\alpha_{12} + \delta_{2}\alpha_{22} + \cdots + \delta_{n}\alpha_{n2} = 0, \qquad \text{(power of } t_{2}) \\ & \cdots \\ & \delta_{1}\alpha_{1m} + \delta_{2}\alpha_{2m} + \cdots + \delta_{n}\alpha_{nm} = 0, \qquad \text{(power of } t_{m}) \\ & \delta_{1} + \delta_{2} + \cdots + \delta_{n} = 1, \qquad \qquad \text{(AM-GM requirement)} \\ & \delta_{1}, \delta_{2}, \dots, \delta_{n} > 0. \qquad \qquad \text{(AM-GM requirement)} \end{array}$$

Instead of finding the optimal solution \mathbf{t}^* to the original problem, which involves lots of messy calculations with derivatives, we can try to learn something about \mathbf{t}^* by finding the optimal solution δ^* to the dual problem.

3 Relationship between primal and dual

To go from the dual back to the primal, we can try to use the equality condition of the AM-GM inequality. For any vector $\boldsymbol{\delta}$ that solves the dual geometric program, *if* there is going to be any **t** with $g(\mathbf{t}) = v(\delta)$, then the inequality we used must be an equality: we must have

$$\delta_1 \cdot \frac{\operatorname{Term}_1(\mathbf{t})}{\delta_1} + \delta_2 \cdot \frac{\operatorname{Term}_2(\mathbf{t})}{\delta_2} + \dots + \delta_n \cdot \frac{\operatorname{Term}_n(\mathbf{t})}{\delta_n} = \left(\frac{\operatorname{Term}_1(\mathbf{t})}{\delta_1}\right)^{\delta_1} \left(\frac{\operatorname{Term}_2(\mathbf{t})}{\delta_2}\right)^{\delta_2} \cdots \left(\frac{\operatorname{Term}_n(\mathbf{t})}{\delta_n}\right)^{\delta_n}$$

and we know from the AM-GM inequality that this is only possible if

$$rac{\operatorname{Term}_1(\mathbf{t})}{\delta_1} = rac{\operatorname{Term}_2(\mathbf{t})}{\delta_2} = \cdots = rac{\operatorname{Term}_n(\mathbf{t})}{\delta_n}$$

Moreover, these must all be equal to their mean $v(\boldsymbol{\delta})$.

But it's possible that this set of equations for \mathbf{t} has no solution. In fact, this will happen a lot of the time.

Theorem 3.1. Given a dual solution δ , if the equations

$$\frac{\operatorname{Term}_1(\mathbf{t})}{\delta_1} = \frac{\operatorname{Term}_2(\mathbf{t})}{\delta_2} = \cdots = \frac{\operatorname{Term}_n(\mathbf{t})}{\delta_n} = v(\boldsymbol{\delta})$$

have a solution \mathbf{t} with $t_1, t_2, \ldots, t_m > 0$, then actually \mathbf{t} is the primal optimal solution and $\boldsymbol{\delta}$ is the dual optimal solution, with $g(\mathbf{t}) = v(\boldsymbol{\delta})$.

Proof. If we can solve this to get a solution \mathbf{t} with $t_1, t_2, \ldots, t_m > 0$, then we have $g(\mathbf{t}) = v(\boldsymbol{\delta})$ by the equality condition of the AM-GM inequality.

That is what guarantees optimality. Since $v(\delta)$ is a lower bound on the primal problem, then for any other primal solution \mathbf{t}' , we have $g(\mathbf{t}') \ge v(\delta)$. So $g(\mathbf{t}') \ge g(\mathbf{t})$, which makes \mathbf{t} optimal.

Similarly, any other dual solution δ' is a lower bound, so in particular it satisfies $g(\mathbf{t}) \geq v(\delta')$. Therefore $v(\delta) \geq v(\delta')$, which makes δ optimal.

This gives us a strategy for trying to solve the geometric program: construct the dual problem, find the optimal solution δ^* , and try to solve the equation above. If it works, then the solution \mathbf{t}^* will be the optimal primal solution.

Will it work? Well, at least it will work if an optimal primal solution exists to begin with:

Theorem 3.2. If t^* is an optimal primal solution, then

$$\boldsymbol{\delta}^* = \left(\frac{\operatorname{Term}_1(\mathbf{t}^*)}{g(\mathbf{t}^*)}, \frac{\operatorname{Term}_2(\mathbf{t}^*)}{g(\mathbf{t}^*)}, \dots, \frac{\operatorname{Term}_n(\mathbf{t}^*)}{g(\mathbf{t}^*)}\right)$$

is an optimal dual solution and $g(\mathbf{t}^*) = v(\boldsymbol{\delta}^*)$.

Proof. If \mathbf{t}^* is an optimal primal solution, then it is a critical point, so $\nabla g(\mathbf{t}^*) = \mathbf{0}$.

The gradient ∇g can be expressed in terms of g. We have

$$\frac{\partial}{\partial t_j} \operatorname{Term}_i(\mathbf{t}) = C_i t_1^{\alpha_{i1}} t_2^{\alpha_{i2}} \cdots (\alpha_{ij} t_j^{\alpha_{ij}-1}) \cdots t_m^{\alpha_{im}} = \frac{\alpha_{ij}}{t_j} \operatorname{Term}_i(\mathbf{t}).$$

 So

$$\frac{\partial}{\partial t_j}g(\mathbf{t}) = \frac{\alpha_{1j}}{t_j}\operatorname{Term}_1(\mathbf{t}) + \frac{\alpha_{2j}}{t_j}\operatorname{Term}_2(\mathbf{t}) + \dots + \frac{\alpha_{nj}}{t_j}\operatorname{Term}_n(\mathbf{t}).$$

So if $\frac{\partial}{\partial t_i}g(\mathbf{t}^*) = 0$, then we have

$$\alpha_{1j} \operatorname{Term}_1(\mathbf{t}^*) + \alpha_{2j} \operatorname{Term}_2(\mathbf{t}^*) + \dots + \alpha_{nj} \operatorname{Term}_n(\mathbf{t}^*) = t_j \cdot 0 = 0$$

which means that $(\text{Term}_1(\mathbf{t}^*), \text{Term}_2(\mathbf{t}^*), \dots, \text{Term}_n(\mathbf{t}^*))$ satisfies the "power of t_j " constraint of the dual GP.

That doesn't make $(\text{Term}_1(\mathbf{t}^*), \text{Term}_2(\mathbf{t}^*), \dots, \text{Term}_n(\mathbf{t}^*))$ a dual solution: it probably doesn't satisfy the constraint $\delta_1 + \delta_2 + \dots + \delta_n = 1$. But if we divide all the components of this vector by their sum $g(\mathbf{t}^*)$, we force the result to satisfy that constraint as well.

So the point δ^* given by $\delta_i = \frac{\operatorname{Term}_i(\mathbf{t}^*)}{g(\mathbf{t}^*)}$ is a feasible dual solution.

Also, we know that

$$\frac{\overline{\operatorname{Term}}_1(\mathbf{t})}{\delta_1^*} = \frac{\overline{\operatorname{Term}}_2(\mathbf{t}^*)}{\delta_2^*} = \frac{\overline{\operatorname{Term}}_n(\mathbf{t}^*)}{\delta_n^*} = g(\mathbf{t}^*)$$

because of how we defined δ^* . So we're in the equality condition of the AM-GM inequality, which means that $g(\mathbf{t}^*) = v(\delta^*)$ and δ^* is an optimal solution.

You should notice that the equations in Theorem 3.1 and Theorem 3.2 are inverses of each other: if you use Theorem 3.2 to find δ^* from \mathbf{t}^* , and then use Theorem 3.1 to find a \mathbf{t} from δ^* , we'll get $\mathbf{t} = \mathbf{t}^*$.