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1 Unconstrained geometric programs

Unconstrained programs are a generalization of the final example problem from the previous lecture,
where we wanted to minimize f(x, y) = 2xy + y

x2
+ 3x

y for x, y > 0.

Define a posynomial term in variables t1, t2, . . . , tm to be a function of the form

Ctα1
1 tα2

2 · · · t
αm
m

where α1, α2, . . . , αm are real powers (not necessarily integers, and not necessarily positive), and
C > 0 is a positive real constant.

A posynomial is just a sum of such posynomial terms. These are supposed to be analogous to
polynomials: we generalize polynomials by allowing arbitrary powers, but add the restriction that
all coefficients must be positive (hence the prefix “pos-”).

An unconstrained geometric program (GP) is the problem of minimizing a posynomial over all
positive real inputs. Formally, the problem is

minimize
t∈Rm

g(t) = Term1(t) + Term2(t) + · · ·+ Termn(t)

subject to t1, t2, . . . , tm > 0

where for 1 ≤ i ≤ n, Termi(t) is a posynomial term

Termi(t) = Cit
αi1
1 tαi2

2 · · · t
αim
m .

For example, when minimizing f(x, y) = 2xy+ y
x2

+ 3x
y , Term1(x, y) = 2x1y1, Term2(x, y) = x−2y1,

and Term3(x, y) = 3x1y−1.

These are called geometric programs because we plan to use the AM-GM inequality to solve them.
We will choose weights δ1, δ2, . . . , δn > 0 with δ1+δ2+· · ·+δn = 1 and then use the inequality

Term1(t) + Term2(t) + · · ·+ Termn(t) = δ1 ·
Term1(t)

δ1
+ δ2 ·

Term2(t)

δ2
+ · · ·+ δn ·

Termn(t)

δn

≥
(

Term1(t)

δ1

)δ1 (Term2(t)

δ2

)δ2
· · ·

(
Termn(t)

δn

)δn
to obtain a lower bound on g(t).

1This document comes from the Math 484 course webpage: https://faculty.math.illinois.edu/~mlavrov/

courses/484-spring-2019.html
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2 The dual of the unconstrained GP

Not all weights δ1, δ2, . . . , δn will work, of course. In the case of an unconstrained GP, the only
time that this inequality actually gives us a lower bound on g(t) is when the powers of t1, t2, . . . , tn
cancel and we get a constant on the right-hand side of the AM-GM inequality.

What do we need for that to happen? Consider a general upper bound on f(x, y) = 2xy+ y
x2

+ 3x
y :

we have

f(x, y) ≥
(

2xy

δ1

)δ1 (y/x2
δ2

)δ2 (3x/y

δ3

)δ3
where x appears to the power δ1 − 2δ2 + δ3 and y appears to the power δ1 + δ2 − δ3. To get a
constant lower bound, we need to choose values of δ1, δ2, and δ3 satisfying

δ1 − 2δ2 + δ3 = 0, (power of x)

δ1 + δ2 − δ3 = 0, (power of y)

δ1 + δ2 + δ3 = 1, (AM-GM requirement)

δ1, δ2, δ3 > 0. (AM-GM requirement)

In general, the lower bound contains the variable ti raised to the power δ1α1i + δ2α2i + · · ·+ δnαni
and we get m+ 1 equations: one from the AM-GM requirement and m from each of the variables
t1, . . . , tm.

In the example problem, there is only one solution to the system of equations in δ. But in general,
there could be many solutions. In such a case, it makes sense to pick the best lower bound.

Assuming that the powers of t1, t2, . . . , tm all cancel, we can simplify the lower bound:

g(t) ≥
(

Term1(t)

δ1

)δ1 (Term2(t)

δ2

)δ2
· · ·

(
Termn(t)

δn

)δn
=

(
C1

δ1

)δ1 (C2

δ2

)δ2
· · ·

(
Cn
δn

)δn
.

So the problem of picking the best lower bound we can itself becomes an optimization problem,
called the dual geometric program:

maximize
δ∈Rn

v(δ) =

(
C1

δ1

)δ1 (C2

δ2

)δ2
· · ·

(
Cn
δn

)δn
subject to δ1α11 + δ2α21 + · · ·+ δnαn1 = 0, (power of t1)

δ1α12 + δ2α22 + · · ·+ δnαn2 = 0, (power of t2)

. . .

δ1α1m + δ2α2m + · · ·+ δnαnm = 0, (power of tm)

δ1 + δ2 + · · ·+ δn = 1, (AM-GM requirement)

δ1, δ2, . . . , δn > 0. (AM-GM requirement)

Instead of finding the optimal solution t∗ to the original problem, which involves lots of messy
calculations with derivatives, we can try to learn something about t∗ by finding the optimal solution
δ∗ to the dual problem.

2



3 Relationship between primal and dual

To go from the dual back to the primal, we can try to use the equality condition of the AM-GM
inequality. For any vector δ that solves the dual geometric program, if there is going to be any t
with g(t) = v(δ), then the inequality we used must be an equality: we must have

δ1 ·
Term1(t)

δ1
+δ2 ·

Term2(t)

δ2
+· · ·+δn ·

Termn(t)

δn
=

(
Term1(t)

δ1

)δ1 (Term2(t)

δ2

)δ2
· · ·

(
Termn(t)

δn

)δn
and we know from the AM-GM inequality that this is only possible if

Term1(t)

δ1
=

Term2(t)

δ2
= · · · = Termn(t)

δn
.

Moreover, these must all be equal to their mean v(δ).

But it’s possible that this set of equations for t has no solution. In fact, this will happen a lot of
the time.

Theorem 3.1. Given a dual solution δ, if the equations

Term1(t)

δ1
=

Term2(t)

δ2
= · · · = Termn(t)

δn
= v(δ)

have a solution t with t1, t2, . . . , tm > 0, then actually t is the primal optimal solution and δ is the
dual optimal solution, with g(t) = v(δ).

Proof. If we can solve this to get a solution t with t1, t2, . . . , tm > 0, then we have g(t) = v(δ) by
the equality condition of the AM-GM inequality.

That is what guarantees optimality. Since v(δ) is a lower bound on the primal problem, then for
any other primal solution t′, we have g(t′) ≥ v(δ). So g(t′) ≥ g(t), which makes t optimal.

Similarly, any other dual solution δ′ is a lower bound, so in particular it satisfies g(t) ≥ v(δ′).
Therefore v(δ) ≥ v(δ′), which makes δ optimal.

This gives us a strategy for trying to solve the geometric program: construct the dual problem,
find the optimal solution δ∗, and try to solve the equation above. If it works, then the solution t∗

will be the optimal primal solution.

Will it work? Well, at least it will work if an optimal primal solution exists to begin with:

Theorem 3.2. If t∗ is an optimal primal solution, then

δ∗ =

(
Term1(t

∗)

g(t∗)
,
Term2(t

∗)

g(t∗)
, . . . ,

Termn(t∗)

g(t∗)

)
is an optimal dual solution and g(t∗) = v(δ∗).

Proof. If t∗ is an optimal primal solution, then it is a critical point, so ∇g(t∗) = 0.
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The gradient ∇g can be expressed in terms of g. We have

∂

∂tj
Termi(t) = Cit

αi1
1 tαi2

2 · · · (αijt
αij−1
j ) · · · tαim

m =
αij
tj

Termi(t).

So
∂

∂tj
g(t) =

α1j

tj
Term1(t) +

α2j

tj
Term2(t) + · · ·+ αnj

tj
Termn(t).

So if ∂
∂tj
g(t∗) = 0, then we have

α1j Term1(t
∗) + α2j Term2(t

∗) + · · ·+ αnj Termn(t∗) = tj · 0 = 0

which means that (Term1(t
∗),Term2(t

∗), . . . ,Termn(t∗)) satisfies the “power of tj” constraint of
the dual GP.

That doesn’t make (Term1(t
∗),Term2(t

∗), . . . ,Termn(t∗)) a dual solution: it probably doesn’t sat-
isfy the constraint δ1 + δ2 + · · ·+ δn = 1. But if we divide all the components of this vector by their
sum g(t∗), we force the result to satisfy that constraint as well.

So the point δ∗ given by δi = Termi(t
∗)

g(t∗) is a feasible dual solution.

Also, we know that
Term1(t)

δ∗1
=

Term2(t
∗)

δ∗2
=

Termn(t∗)

δ∗n
= g(t∗)

because of how we defined δ∗. So we’re in the equality condition of the AM-GM inequality, which
means that g(t∗) = v(δ∗) and δ∗ is an optimal solution.

You should notice that the equations in Theorem 3.1 and Theorem 3.2 are inverses of each other:
if you use Theorem 3.2 to find δ∗ from t∗, and then use Theorem 3.1 to find a t from δ∗, we’ll get
t = t∗.
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