| Math 484: Nonlinear Programming |
| :--- | ---: |

1 Unconstrained geometric programs

Unconstrained programs are a generalization of the final example problem from the previous lecture, where we wanted to minimize $f(x, y)=2 x y+\frac{y}{x^{2}}+\frac{3 x}{y}$ for $x, y>0$.
Define a posynomial term in variables $t_{1}, t_{2}, \ldots, t_{m}$ to be a function of the form

$$
C t_{1}^{\alpha_{1}} t_{2}^{\alpha_{2}} \cdots t_{m}^{\alpha_{m}}
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are real powers (not necessarily integers, and not necessarily positive), and $C>0$ is a positive real constant.

A posynomial is just a sum of such posynomial terms. These are supposed to be analogous to polynomials: we generalize polynomials by allowing arbitrary powers, but add the restriction that all coefficients must be positive (hence the prefix "pos-").

An unconstrained geometric program (GP) is the problem of minimizing a posynomial over all positive real inputs. Formally, the problem is

$$
\begin{array}{ll}
\underset{\mathbf{t} \in \mathbb{R}^{m}}{\operatorname{minimize}} & g(t)=\operatorname{Term}_{1}(\mathbf{t})+\operatorname{Term}_{2}(\mathbf{t})+\cdots+\operatorname{Term}_{n}(\mathbf{t}) \\
\text { subject to } & t_{1}, t_{2}, \ldots, t_{m}>0
\end{array}
$$

where for $1 \leq i \leq n, \operatorname{Term}_{i}(\mathbf{t})$ is a posynomial term

$$
\operatorname{Term}_{i}(\mathbf{t})=C_{i} t_{1}^{\alpha_{i 1}} t_{2}^{\alpha_{i 2}} \cdots t_{m}^{\alpha_{i m}}
$$

For example, when minimizing $f(x, y)=2 x y+\frac{y}{x^{2}}+\frac{3 x}{y}, \operatorname{Term}_{1}(x, y)=2 x^{1} y^{1}, \operatorname{Term}_{2}(x, y)=x^{-2} y^{1}$, and $\operatorname{Term}_{3}(x, y)=3 x^{1} y^{-1}$.

These are called geometric programs because we plan to use the AM-GM inequality to solve them. We will choose weights $\delta_{1}, \delta_{2}, \ldots, \delta_{n}>0$ with $\delta_{1}+\delta_{2}+\cdots+\delta_{n}=1$ and then use the inequality

$$
\begin{aligned}
\operatorname{Term}_{1}(\mathbf{t})+\operatorname{Term}_{2}(\mathbf{t})+\cdots+\operatorname{Term}_{n}(\mathbf{t}) & =\delta_{1} \cdot \frac{\operatorname{Term}_{1}(\mathbf{t})}{\delta_{1}}+\delta_{2} \cdot \frac{\operatorname{Term}_{2}(\mathbf{t})}{\delta_{2}}+\cdots+\delta_{n} \cdot \frac{\operatorname{Term}_{n}(\mathbf{t})}{\delta_{n}} \\
& \geq\left(\frac{\operatorname{Term}_{1}(\mathbf{t})}{\delta_{1}}\right)^{\delta_{1}}\left(\frac{\operatorname{Term}_{2}(\mathbf{t})}{\delta_{2}}\right)^{\delta_{2}} \cdots\left(\frac{\operatorname{Term}_{n}(\mathbf{t})}{\delta_{n}}\right)^{\delta_{n}}
\end{aligned}
$$

to obtain a lower bound on $g(\mathbf{t})$.

[^0]
2 The dual of the unconstrained GP

Not all weights $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ will work, of course. In the case of an unconstrained GP, the only time that this inequality actually gives us a lower bound on $g(\mathbf{t})$ is when the powers of $t_{1}, t_{2}, \ldots, t_{n}$ cancel and we get a constant on the right-hand side of the AM-GM inequality.

What do we need for that to happen? Consider a general upper bound on $f(x, y)=2 x y+\frac{y}{x^{2}}+\frac{3 x}{y}$: we have

$$
f(x, y) \geq\left(\frac{2 x y}{\delta_{1}}\right)^{\delta_{1}}\left(\frac{y / x^{2}}{\delta_{2}}\right)^{\delta_{2}}\left(\frac{3 x / y}{\delta_{3}}\right)^{\delta_{3}}
$$

where x appears to the power $\delta_{1}-2 \delta_{2}+\delta_{3}$ and y appears to the power $\delta_{1}+\delta_{2}-\delta_{3}$. To get a constant lower bound, we need to choose values of δ_{1}, δ_{2}, and δ_{3} satisfying

$$
\begin{aligned}
\delta_{1}-2 \delta_{2}+\delta_{3} & =0, & & \text { (power of } x) \\
\delta_{1}+\delta_{2}-\delta_{3} & =0, & & \text { (power of } y) \\
\delta_{1}+\delta_{2}+\delta_{3} & =1, & & \text { (AM-GM requirement) } \\
\delta_{1}, \delta_{2}, \delta_{3} & >0 . & & \text { (AM-GM requirement) }
\end{aligned}
$$

In general, the lower bound contains the variable t_{i} raised to the power $\delta_{1} \alpha_{1 i}+\delta_{2} \alpha_{2 i}+\cdots+\delta_{n} \alpha_{n i}$ and we get $m+1$ equations: one from the AM-GM requirement and m from each of the variables t_{1}, \ldots, t_{m}.

In the example problem, there is only one solution to the system of equations in $\boldsymbol{\delta}$. But in general, there could be many solutions. In such a case, it makes sense to pick the best lower bound.

Assuming that the powers of $t_{1}, t_{2}, \ldots, t_{m}$ all cancel, we can simplify the lower bound:

$$
g(\mathbf{t}) \geq\left(\frac{\operatorname{Term}_{1}(\mathbf{t})}{\delta_{1}}\right)^{\delta_{1}}\left(\frac{\operatorname{Term}_{2}(\mathbf{t})}{\delta_{2}}\right)^{\delta_{2}} \cdots\left(\frac{\operatorname{Term}_{n}(\mathbf{t})}{\delta_{n}}\right)^{\delta_{n}}=\left(\frac{C_{1}}{\delta_{1}}\right)^{\delta_{1}}\left(\frac{C_{2}}{\delta_{2}}\right)^{\delta_{2}} \cdots\left(\frac{C_{n}}{\delta_{n}}\right)^{\delta_{n}} .
$$

So the problem of picking the best lower bound we can itself becomes an optimization problem, called the dual geometric program:

$$
\begin{array}{lll}
\underset{\delta \in \mathbb{R}^{n}}{\operatorname{maximize}} & v(\boldsymbol{\delta})=\left(\frac{C_{1}}{\delta_{1}}\right)^{\delta_{1}}\left(\frac{C_{2}}{\delta_{2}}\right)^{\delta_{2}} \cdots\left(\frac{C_{n}}{\delta_{n}}\right)^{\delta_{n}} & \\
\text { subject to } & \delta_{1} \alpha_{11}+\delta_{2} \alpha_{21}+\cdots+\delta_{n} \alpha_{n 1}=0, & \text { (power of } \left.t_{1}\right) \\
& \delta_{1} \alpha_{12}+\delta_{2} \alpha_{22}+\cdots+\delta_{n} \alpha_{n 2}=0, & \text { (power of } \left.t_{2}\right) \\
& \cdots & \\
& \delta_{1} \alpha_{1 m}+\delta_{2} \alpha_{2 m}+\cdots+\delta_{n} \alpha_{n m}=0, & \text { (power of } t_{m} \text {) } \\
& \delta_{1}+\delta_{2}+\cdots+\delta_{n}=1, & \text { (AM-GM requirement) } \\
& \delta_{1}, \delta_{2}, \ldots, \delta_{n}>0 . & \text { (AM-GM requirement) }
\end{array}
$$

Instead of finding the optimal solution \mathbf{t}^{*} to the original problem, which involves lots of messy calculations with derivatives, we can try to learn something about \mathbf{t}^{*} by finding the optimal solution δ^{*} to the dual problem.

3 Relationship between primal and dual

To go from the dual back to the primal, we can try to use the equality condition of the AM-GM inequality. For any vector $\boldsymbol{\delta}$ that solves the dual geometric program, if there is going to be any \mathbf{t} with $g(\mathbf{t})=v(\delta)$, then the inequality we used must be an equality: we must have
$\delta_{1} \cdot \frac{\operatorname{Term}_{1}(\mathbf{t})}{\delta_{1}}+\delta_{2} \cdot \frac{\operatorname{Term}_{2}(\mathbf{t})}{\delta_{2}}+\cdots+\delta_{n} \cdot \frac{\operatorname{Term}_{n}(\mathbf{t})}{\delta_{n}}=\left(\frac{\operatorname{Term}_{1}(\mathbf{t})}{\delta_{1}}\right)^{\delta_{1}}\left(\frac{\operatorname{Term}_{2}(\mathbf{t})}{\delta_{2}}\right)^{\delta_{2}} \cdots\left(\frac{\operatorname{Term}_{n}(\mathbf{t})}{\delta_{n}}\right)^{\delta_{n}}$
and we know from the AM-GM inequality that this is only possible if

$$
\frac{\operatorname{Term}_{1}(\mathbf{t})}{\delta_{1}}=\frac{\operatorname{Term}_{2}(\mathbf{t})}{\delta_{2}}=\cdots=\frac{\operatorname{Term}_{n}(\mathbf{t})}{\delta_{n}} .
$$

Moreover, these must all be equal to their mean $v(\boldsymbol{\delta})$.
But it's possible that this set of equations for \mathbf{t} has no solution. In fact, this will happen a lot of the time.

Theorem 3.1. Given a dual solution $\boldsymbol{\delta}$, if the equations

$$
\frac{\operatorname{Term}_{1}(\mathbf{t})}{\delta_{1}}=\frac{\operatorname{Term}_{2}(\mathbf{t})}{\delta_{2}}=\cdots=\frac{\operatorname{Term}_{n}(\mathbf{t})}{\delta_{n}}=v(\boldsymbol{\delta})
$$

have a solution \mathbf{t} with $t_{1}, t_{2}, \ldots, t_{m}>0$, then actually \mathbf{t} is the primal optimal solution and $\boldsymbol{\delta}$ is the dual optimal solution, with $g(\mathbf{t})=v(\boldsymbol{\delta})$.

Proof. If we can solve this to get a solution \mathbf{t} with $t_{1}, t_{2}, \ldots, t_{m}>0$, then we have $g(\mathbf{t})=v(\boldsymbol{\delta})$ by the equality condition of the AM-GM inequality.

That is what guarantees optimality. Since $v(\boldsymbol{\delta})$ is a lower bound on the primal problem, then for any other primal solution \mathbf{t}^{\prime}, we have $g\left(\mathbf{t}^{\prime}\right) \geq v(\boldsymbol{\delta})$. So $g\left(\mathbf{t}^{\prime}\right) \geq g(\mathbf{t})$, which makes \mathbf{t} optimal.

Similarly, any other dual solution $\boldsymbol{\delta}^{\prime}$ is a lower bound, so in particular it satisfies $g(\mathbf{t}) \geq v\left(\boldsymbol{\delta}^{\prime}\right)$. Therefore $v(\boldsymbol{\delta}) \geq v\left(\boldsymbol{\delta}^{\prime}\right)$, which makes $\boldsymbol{\delta}$ optimal.

This gives us a strategy for trying to solve the geometric program: construct the dual problem, find the optimal solution $\boldsymbol{\delta}^{*}$, and try to solve the equation above. If it works, then the solution \mathbf{t}^{*} will be the optimal primal solution.

Will it work? Well, at least it will work if an optimal primal solution exists to begin with:
Theorem 3.2. If \mathbf{t}^{*} is an optimal primal solution, then

$$
\boldsymbol{\delta}^{*}=\left(\frac{\operatorname{Term}_{1}\left(\mathbf{t}^{*}\right)}{g\left(\mathbf{t}^{*}\right)}, \frac{\operatorname{Term}_{2}\left(\mathbf{t}^{*}\right)}{g\left(\mathbf{t}^{*}\right)}, \ldots, \frac{\operatorname{Term}_{n}\left(\mathbf{t}^{*}\right)}{g\left(\mathbf{t}^{*}\right)}\right)
$$

is an optimal dual solution and $g\left(\mathbf{t}^{*}\right)=v\left(\boldsymbol{\delta}^{*}\right)$.
Proof. If \mathbf{t}^{*} is an optimal primal solution, then it is a critical point, so $\nabla g\left(\mathbf{t}^{*}\right)=\mathbf{0}$.

The gradient ∇g can be expressed in terms of g. We have

$$
\frac{\partial}{\partial t_{j}} \operatorname{Term}_{i}(\mathbf{t})=C_{i} t_{1}^{\alpha_{i 1}} t_{2}^{\alpha_{i 2}} \cdots\left(\alpha_{i j} t_{j}^{\alpha_{i j}-1}\right) \cdots t_{m}^{\alpha_{i m}}=\frac{\alpha_{i j}}{t_{j}} \operatorname{Term}_{i}(\mathbf{t}) .
$$

So

$$
\frac{\partial}{\partial t_{j}} g(\mathbf{t})=\frac{\alpha_{1 j}}{t_{j}} \operatorname{Term}_{1}(\mathbf{t})+\frac{\alpha_{2 j}}{t_{j}} \operatorname{Term}_{2}(\mathbf{t})+\cdots+\frac{\alpha_{n j}}{t_{j}} \operatorname{Term}_{n}(\mathbf{t}) .
$$

So if $\frac{\partial}{\partial t_{j}} g\left(\mathbf{t}^{*}\right)=0$, then we have

$$
\alpha_{1 j} \operatorname{Term}_{1}\left(\mathbf{t}^{*}\right)+\alpha_{2 j} \operatorname{Term}_{2}\left(\mathbf{t}^{*}\right)+\cdots+\alpha_{n j} \operatorname{Term}_{n}\left(\mathbf{t}^{*}\right)=t_{j} \cdot 0=0
$$

which means that $\left(\operatorname{Term}_{1}\left(\mathbf{t}^{*}\right), \operatorname{Term}_{2}\left(\mathbf{t}^{*}\right), \ldots, \operatorname{Term}_{n}\left(\mathbf{t}^{*}\right)\right)$ satisfies the "power of t_{j} " constraint of the dual GP.

That doesn't make $\left(\operatorname{Term}_{1}\left(\mathbf{t}^{*}\right), \operatorname{Term}_{2}\left(\mathbf{t}^{*}\right), \ldots, \operatorname{Term}_{n}\left(\mathbf{t}^{*}\right)\right)$ a dual solution: it probably doesn't satisfy the constraint $\delta_{1}+\delta_{2}+\cdots+\delta_{n}=1$. But if we divide all the components of this vector by their sum $g\left(\mathbf{t}^{*}\right)$, we force the result to satisfy that constraint as well.

So the point δ^{*} given by $\delta_{i}=\frac{\operatorname{Term}_{i}\left(\mathbf{t}^{*}\right)}{g\left(\mathbf{t}^{*}\right)}$ is a feasible dual solution.
Also, we know that

$$
\frac{\operatorname{Term}_{1}(\mathbf{t})}{\delta_{1}^{*}}=\frac{\operatorname{Term}_{2}\left(\mathbf{t}^{*}\right)}{\delta_{2}^{*}}=\frac{\operatorname{Term}_{n}\left(\mathbf{t}^{*}\right)}{\delta_{n}^{*}}=g\left(\mathbf{t}^{*}\right)
$$

because of how we defined $\boldsymbol{\delta}^{*}$. So we're in the equality condition of the AM-GM inequality, which means that $g\left(\mathbf{t}^{*}\right)=v\left(\boldsymbol{\delta}^{*}\right)$ and $\boldsymbol{\delta}^{*}$ is an optimal solution.

You should notice that the equations in Theorem 3.1 and Theorem 3.2 are inverses of each other: if you use Theorem 3.2 to find $\boldsymbol{\delta}^{*}$ from \mathbf{t}^{*}, and then use Theorem 3.1 to find a \mathbf{t} from $\boldsymbol{\delta}^{*}$, we'll get $\mathbf{t}=\mathbf{t}^{*}$.

[^0]: ${ }^{1}$ This document comes from the Math 484 course webpage: https://faculty.math.illinois.edu/~mlavrov/ courses/484-spring-2019.html

