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1 The geometric programming algorithm

Here is a summary of what we know about geometric programming so far. Given a geometric
program, a problem of the form

minimize
t∈Rm

g(t) = Term1(t) + Term2(t) + · · ·+ Termn(t)

subject to t1, t2, . . . , tm > 0

where for 1 ≤ i ≤ n, Termi(t) is a posynomial term

Termi(t) = Cit
αi1
1 tαi2

2 · · · t
αim
m ,

we begin by constructing the dual geometric program

maximize
δ∈Rn

v(δ) =

(
C1

δ1

)δ1 (C2

δ2

)δ2
· · ·
(
Cn
δn

)δn
subject to δ1α11 + δ2α21 + · · ·+ δnαn1 = 0, (power of t1)

δ1α12 + δ2α22 + · · ·+ δnαn2 = 0, (power of t2)

. . .

δ1α1m + δ2α2m + · · ·+ δnαnm = 0, (power of tm)

δ1 + δ2 + · · ·+ δn = 1, (AM-GM requirement)

δ1, δ2, . . . , δn > 0. (AM-GM requirement)

and solving it to get the optimal dual solution δ∗. Next, using this dual solution, we find t∗ by
solving the equations

Term1(t
∗)

δ∗1
=

Term2(t
∗)

δ∗2
= · · · = Termn(t∗)

δ∗n
= v(δ∗).

The result is guaranteed to be an optimal solution to the original problem.

2 Duality in optimization

This dual-problem approach is an idea that occurs in many places in optimization. If you’ve taken
a class on linear programming, you’ve seen dual linear programs; later in this course, we’ll see that
both linear programming duality and geometric programming duality are special cases of KKT
duality.

1This document comes from the Math 484 course webpage: https://faculty.math.illinois.edu/~mlavrov/

courses/484-spring-2019.html
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But even more broadly than this, the philosophy of optimization duality is as follows: we suppose
that we have an optimization problem and a scheme for coming up with bounds on it. (In the case
of a minimization problem, they should be lower bounds.) Our scheme should be flexible: there
should be some parameters we can vary that determine how good a bound we get. In this case, the
dual problem is to choose these parameters to find the best bound possible.

To talk about this more easily, here is some terminology:

• The set of all points satisfying the constraints of an optimization problem is called the feasible
region, and a point in that region is a feasible solution or candidate solution.

• The function we are trying to optimize is called the objective function, and a feasible solution
with the best objective value possible is an optimal solution.

• When we have a dual program, the original problem is called the primal program, and we
talk about points that are primal feasible, dual optimal, etc.

• When a problem has no feasible solutions, we call it infeasible or inconsistent.

Duality is symmetric. For example, instead of viewing a dual feasible solution δ as a parameter
giving us a lower bound v(δ) on the primal objective value, we can think of a primal feasible
solution t as a parameter giving us an upper bound g(t) on the dual objective value. Both of these
are ways to state the inequality that for every primal feasible t and dual feasible δ,

g(t) ≥ v(δ).

So the primal program is a dual of the dual program.

In the case of geometric programming, not only do we get the inequality g(t) ≥ v(δ) (which is a
required feature of optimization duality), but also something stronger: if t∗ is the optimal primal
solution and δ∗ is the optimal dual solution, then g(t∗) = v(δ∗). This is called strong duality.

In other cases, there might be a duality gap between the optimal values of the primal and the dual.
The dual program is doing the best it can to give us bounds on the primal program, but the best
bound it can give is still not tight.

3 Badly behaved geometric programs

To be able to solve geometric programs properly, we have to know what can go wrong, and be able
to recognize when we are dealing with a badly behaved geometric program.

For now—while our geometric programs are still unconstrained—we are lucky that they are always
consistent. Set all variables to 1, and you will get a feasible solution. Still, there can be trouble:
the geometric program

minimize
x∈R

g(x) = x

subject to x > 0

has no optimal solution, because we want to set x to 0 and we’re not allowed to do that.
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This is reflected in the dual program. The dual will have exactly one variable δ in this case. We
get two conflicting requirements: δ = 0 so that the power of x is 0, and δ = 1 so that we can apply
the AM-GM inequality. So the dual program is inconsistent.

Here’s a slightly fancier version of this bad behavior. Consider the geometric program

minimize
x,y∈R

g(x, y) = x+ x−1 + xy−1

subject to x > 0, y > 0.

Here, we can make g(x, y) arbitrarily close to 2 by setting x = 1 and setting y to a very large
number. But we can never get to 2, because y−1 > 0 for all y > 0. So, once again, there is no
optimal solution.

The dual geometric program is

maximize
δ∈R3

v(δ) =

(
1

δ1

)δ1 ( 1

δ2

)δ2 ( 1

δ3

)δ3
subject to δ1 − δ2 + δ3 = 0, (power of x)

−δ3 = 0, (power of y)

δ1 + δ2 + δ3 = 1, (AM-GM requirement)

δ1, δ2, δ3 > 0. (AM-GM requirement)

This is inconsistent for a subtler reason: solving the linear equations gives us the point δ = (12 ,
1
2 , 0),

but this violates the positivity constraint δ3 > 0.

We will not prove this yet, but these examples are instances of a general principle: the dual
geometric program is inconsistent precisely when the primal program has no optimal solution. So
when the primal program is ill-behaved, we’ll catch it.

4 An example with infinitely many dual feasible solutions

Here is an example of what happens when there are infinitely many feasible dual solutions, so that
we actually have to consider v(δ) when solving the dual program. (In general, we expect this to
happen when g(t) has few variables and many terms, since this corresponds to a dual program with
many variables and few constraints.)

The problem is this:

minimize
t1,t2∈R

g(t1, t2) = t21 + t22 + 2t1t2 +
1

t1t2

subject to t1, t2 > 0.

The dual problem will have four variables δ1, δ2, δ3, δ4, corresponding to the four terms. We get
three constraints, one from t1, one from t2, and one from the usual requirement that the δ’s all
have to sum to 1.
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maximize
δ1,δ2,δ3,δ4∈R

v(δ1, δ2, δ3, δ4) =

(
1

δ1

)δ1 ( 1

δ2

)δ2 ( 2

δ3

)δ3 ( 1

δ4

)δ4
subject to 2δ1 + δ3 − δ4 = 0, (power of t1)

2δ2 + δ3 − δ4 = 0, (power of t2)

δ1 + δ2 + δ3 + δ4 = 1, (AM-GM requirement)

δ1, δ2, δ3, δ4 > 0. (AM-GM requirement)

The first two equations tell us δ1 = δ2 = 1
2(δ4 − δ3). So set δ1 = δ2 = s. Solving for δ3 and

δ4 in terms of s gives us a one-dimensional infinite family of solutions: δ = (s, s, 12 − 2s, 12). All
components of this vector must be positive, so we have 0 < s < 1

4 .

Now comes the obnoxious step: maximizing v(δ). Since δ is now a function of s, it is equivalent to
maximize

v(s) =

(
1

s

)s(1

s

)s( 2
1
2 − 2s

) 1
2
−2s(

1
1
2

) 1
2

.

It is easier (both in this case, and in general) to maximize log v(s) instead of v(s), because the
product becomes a sum:

log v(s) = s log
1

s
+ s log

1

s
+

(
1

2
− 2s

)
log

2
1
2 − 2s

+
1

2
log

1

2

= −2s log s+

(
2s− 1

2

)
log

(
1

4
− s
)
− 1

2
log 2.

As usual, we find the critical point by setting the derivative to 0:

d

ds
log v(s) = −2 log s− 2 + 2 log

(
1

4
− s
)

+ 2 = 0 ⇐⇒ 2 log

(
1

4
− s
)

= 2 log s.

In general, this could get messy, but in this case, we can immediately conclude that 1
4 − s = s and

bypass dealing with the logarithms. This tells us that s = 1
8 is the critical point.

In fact, the unique critical point will always be the global maximizer. The function log v(s) =
δ1 log C1

δ1
+ · · ·+ δn log Cn

δn
has Hessian matrix

−1/δ1 0 · · · 0
0 −1/δ2 · · · 0
...

...
. . .

...
0 0 · · · −1/δn


which is negative definite when δ1, . . . , δn > 0. (In other words, log v(δ) is strictly concave.)

So the optimal dual solution is δ∗ = (18 ,
1
8 ,

1
4 ,

1
2), with v(δ∗) = 81/8 · 81/8 · 81/4 · 21/2 = 4. This gives

us the equations
t21

1/8
=

t22
1/8

=
2t1t2
1/4

=
t−11 t−12

1/2
= 4

giving the solution t∗ = (
√
2
2 ,
√
2
2 ).
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