
Math 484: Nonlinear Programming1 Mikhail Lavrov

Chapter 3, Lecture 6: Broyden’s Method

April 26, 2019 University of Illinois at Urbana-Champaign

1 Motivation

Previously, we assumed that computing the gradient ∇f(x) or the Hessian matrix Hf(x) was easy
and costless. But in practice, there are many situations where that’s not true:

• If f : Rn → R with n large, then computing Hf(x) requires finding many derivatives, which
is expensive even when we can take partial derivatives of f easily.

• If f is not given to us explicitly, then we cannot compute derivatives of f directly (unless we
use some approximation algorithm for derivatives).

In one dimension, we discussed the secant method as a solution to the second of these problems.
Here, we used the values at the last two points to estimate the derivative.

Now let’s pass to the n-dimensional case: finding the solution to a system of equations g(x) = 0 for
a function g : Rn → Rn. To approximate Newton’s method, we need an estimate of the Jacobian
∇g; in other words, a linear approximation of g.

We encounter a problem: just the values of g at the last two points are not enough to build a
complete linear approximation of g. (In general, such an approximation would need at least n + 1
points to define.)

2 Rank one updates

Our solution to this problem is to keep around a matrix that approximates the Jacobian, and
update it at every step with the new information we learn, instead of throwing it away entirely as
the secant method does.

Intuitively, when comparing the new value g(x(k+1)) to the previous value g(x(k)), we can learn
something about the rate of change of g in the direction of x(k+1) − x(k), but nothing about the
rate of change of g in other directions.

Let’s build on the justification behind Newton’s method to figure out how to do this. With Newton’s
method, when we’re at a point x(k), we make a linear approximation to g:

g(x) ≈ g(x(k)) +∇g(x(k))(x− x(k)).

Then we let x(k+1) be the point where the linear approximation equals 0.

Now suppose that instead of computing the Jacobian∇g(x(k)), we somehow found an approximation
Dk: an n × n matrix that’s our best guess at the partial derivatives of g. Just as with Newton’s

1This document comes from the Math 484 course webpage: https://faculty.math.illinois.edu/~mlavrov/

courses/484-spring-2019.html

1

https://faculty.math.illinois.edu/~mlavrov/courses/484-spring-2019.html
https://faculty.math.illinois.edu/~mlavrov/courses/484-spring-2019.html


method, we make a linear approximation

g(x) ≈ g(x(k)) + Dk(x− x(k)).

We let x(k+1) be the point where the linear approximation equals 0.

In practice, g(x(k+1)) doesn’t end up being 0: if everything is going well, it should be closer to
0 than g(x(k)) was, but the linear approximation is not exact. This is new information, and we
should replace Dk by a new matrix Dk+1 that takes this new information into account.

It’s natural to ask that Dk+1 predict correctly what Dk was wrong about. We now know the value
of g(x(k+1)), so we can ask that if we replace Dk by Dk+1 in our previous approximation, it should
give that value exactly. That is, we should have

g(x(k)) + Dk+1(x
(k+1) − x(k)) = g(x(k+1)) (1)

where we previously had
g(x(k)) + Dk(x(k+1) − x(k)) = 0. (2)

Second, we ask that in every direction orthogonal to the direction x(k+1) − x(k), we still make the
same prediction. After all, we didn’t go in such directions, so we can’t have learned anything new
about them. So we require that

Dky = Dk+1y whenever y · (x(k+1) − x(k)) = 0. (3)

Together, equations (1), (2), and (3) characterize the change from Dk to Dk+1.

It is easier to reason in terms of the “update” from Dk to Dk+1: the difference between Dk+1 and
Dk. If we denote this difference by Uk = Dk+1−Dk, and define b(k) = x(k+1)−x(k), then by taking
the difference of (1) and (2), we get

Ukb
(k) = g(x(k+1))

while (3) can be rewritten as

Uky = 0 whenever y · b(k) = 0.

If this matrix exists, it must be unique, because any input y can be written as y = y‖ + y⊥ where
y‖ is a multiple of b(k), and y⊥ is orthogonal to b(k); the equations above define what Uk does to
y‖ and y⊥, and therefore they determine what Uk does to y.

One way to get a function f(y) that has this property is to scale g(x(k+1)) (the desired nonzero
output) proportionally to the dot product y · b(k). That is, to set

f(y) =
y · b(k)

b(k) · b(k)
g(x(k+1)).

This turns out to be a linear function, so that there actually is some matrix Uk such that f(y) =

Uky. We can see this by rewrititing y · b(k) as (b(k))
T
y, so that

f(y) =
g(x(k+1))(b(k))

T
y

b(k) · b(k)
.

2



This tells us that the unique update matrix Uk that does the job is

Uk =
g(x(k+1))(b(k))

T

b(k) · b(k)
.

Adding this matrix to Dk to get Dk+1 is called a rank-one update, because the rank of the matrix

Uk is 1: its columns are all multiples of g(x(k+1)). (And its rows are all multiples of (b(k))
T

.) This
makes it a “minimal” change from Dk to Dk+1 in some sense, and using a rank-one matrix also has
some theoretical benefits.

3 Broyden’s method

3.1 The method

We begin, as usual, with some starting point x(0); we also need a matrix D0 to start as our
approximation to ∇g(x(0)). (If computing derivatives of g is expensive but not impossible, we
could set D0 equal to the Jacobian, since we only need to do this once. Otherwise, we could set
D0 to the identity matrix because that’s simple to work with.)

To compute x(k+1) and Dk+1 from x(k) and Dk, we:

1. Solve g(x(k)) +Dk(x(k+1)−x(k)) = 0 for x(k+1); equivalently, set x(k+1) = x(k)−D−1k g(x(k)).

2. Set Dk+1 = Dk + g(x(k+1))(b(k))
T

b(k)·b(k) , where b(k) = x(k+1) − x(k).

3.2 An example

Here’s an example that illustrates how the method works, and also demonstrates the ability of
Broyden’s method to recover from a bad initial guess for D0.

Suppose we are solving the system of equations{
x + y = 2,

x− y = 0

and decide that taking the derivatives of these linear functions is too hard for us. So we’re going

to pick an initial guess (x0, y0) = (0, 0) and and set D0 =

[
1 0
0 1

]
. Our function g is g(x, y) =

(x + y − 2, x− y).

Our first step sets [
x1
y1

]
=

[
x0
y0

]
−D−10 g(x0, y0) =

[
0
0

]
−
[
1 0
0 1

]−1 [−2
0

]
=

[
2
0

]
so the step we took is b(0) = (2, 0), and g(x1, y1) = (0, 2). Using the update formula

D1 = D0 +
g(x1, y1)(b

(0))
T

b(0) · b(0)

3



we set

D1 =

[
1 0
0 1

]
+

1

4

[
0
2

] [
2 0

]
=

[
1 0
1 1

]
.

(Newton’s method, or even Broyden’s method with an accurate D0, would have gotten the answer
in this first step, but we’ll need a bit more work.)

Our second step sets [
x2
y2

]
=

[
2
0

]
−
[
1 0
1 1

]−1 [
0
2

]
=

[
2
−2

]
so the step we took is b(1) = (0,−2) and g(x2, y2) = (−2, 4). We do another rank-one update to
get

D2 =

[
1 0
1 1

]
+

1

4

[
−2
4

] [
0 −2

]
=

[
1 1
1 −1

]
.

Now, with information at more points, D2 becomes the correct Jacobian matrix of the linear
function g. In the next step, our linear approximation to g will actually be g, and so (x3, y3) will
be the correct answer (1, 1).

In general, it is not always true that after a bad guess of D0, the matrix Dk will always approximate
∇g(x(k)) after many steps. It is often the case that after enough steps, the matrix Dk will accurately
tell us what ∇g(x(k)) does in the relevant directions: the ones we actually need to use.

4 The Sherman–Morrison formula

The material in this section is not covered in the textbook, but it’s a significant factor in why
Broyden’s method is computationally efficient, and explains why we’re so excited that the update
matrix Uk is a rank-one matrix.

When we were using Newton’s method, we wanted to avoid computing ∇g(x(k))−1; instead, we
preferred to solve a system of linear equations at each step. With Broyden’s method, however, the
iterative step

x(k+1) = x(k) −D−1k g(x(k))

is actually much faster to use. This is because we don’t have to recompute the inverse from scratch
after a rank-one update: we can find D−1k+1 directly from D−1k , by a result known as the Sherman–
Morrison formula.

The Sherman–Morrison formula says that if A is an n × n invertible matrix and u,v ∈ Rn, then
(A + uvT)−1 can be computed from A−1 as

(A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

We can use this to compute D−1k+1 from D−1k if we set A = Dk, u = g(x(k+1)), and v = b(k)

b(k)·b(k) .
Since the Sherman–Morrison formula never requires multiplying two matrices together (we can
write A−1uvTA−1 as A−1u times vTA−1), applying it is much faster even than solving a system of
linear equations.

4



In this way, we avoid ever having to compute Dk explicitly: only D−1k is needed. After simplify-
ing the Sherman–Morrison formula to our specific needs, we can re-summarize Broyden’s method
as:

1. Set x(k+1) = x(k) −D−1k g(x(k)).

2. In terms of the vectors b(k) = x(k+1) − x(k) = −D−1k g(x(k)) and c(k) = D−1k g(x(k+1)), set

D−1k+1 = D−1k −
c(k)

(
(b(k))

T
D−1k

)
b(k) · (b(k) + c(k))

.

Even if the evaluation of ∇g(x(k)) were costless, this method would be faster than Newton’s method
when the number of dimensions n is large.

5


	Motivation
	Rank one updates
	Broyden's method
	The method
	An example

	The Sherman–Morrison formula

