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1 Polynomial interpolation

Suppose we are given points (x1, y1), (x2, y2), . . . , (xk, yk), and we want a polynomial f that passes
through all the points: f(xi) = yi for 1 ≤ i ≤ k. What can we do?

One way to think of this problem is as a system of linear equations. If the polynomial f(x) is
written as anx

n + an−1x
n−1 + · · ·+ a1x + a0, then we have k constraints on the coefficients:

anx
n
1 + an−1x

n−1
1 + · · ·+ a0 = y1

anx
n
2 + an−1x

n−1
2 + · · ·+ a0 = y2

. . .

anx
n
k + an−1x

n−1
k + · · ·+ a0 = yk.

We can rewrite this in matrix form as
1 x1 x21 · · · xn1
1 x2 x22 · · · xn2
...

...
...

. . .
...

1 xk x2k · · · xnk



a0
a1
a2
...
an

 =


y1
y2
...
yk

 .

This strongly suggests that we should take n = k−1. We might be worried, though, that occasion-
ally this matrix is singular for n = k− 1, in which case we would have infinitely many polynomials
for some values of y1, y2, . . . , yk and no polynomials for other values.

This doesn’t happen, provided all the x-values are different.

Theorem 1.1. Assuming xi 6= xj for all i, j between 1 and k, there is a unique polynomial of
degree at most k − 1 that passes through the points (x1, y1), (x2, y2), . . . , (xk, yk).

Proof. Write the matrix equation above as Ma = y, where M is the matrix of powers of x1, . . . , xk,
a is the vector of coefficients we want to find, and y is the vector of y-values.

First, consider the case where y = 0. Then we are asking for a polynomial of degree k − 1 which
is 0 at the points x1, x2, . . . , xk. But a nonzero polynomial of degree k − 1 can have at most k − 1
roots, so only the zero polynomial can satisfy this condition.

This means that when the system of equations above is homogeneous (we are solving Ma = 0)
there is a unique solution a = 0. By the usual theory of linear equations, this means that there can
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always be at most one solution to the general case: if we had two solutions a(1) 6= a(2) to the system
Ma = y, then we’d have M(a(1) − a(2)) = 0, obtaining a nontrivial solution to the homogeneous
equation.

At this point, we can finish the proof with an argument by dimensions: since the null space of M
(the set of solutions to Ma = 0) has dimension 0 and the matrix is k × k, the column space of M
(the set of vectors y for which Ma = y has a solution) has dimension k, which means it must be
all of Rk. So there is a unique solution a for any choice of y.

But we also have a more explicit construction for the polynomial that works, called the Lagrange
interpolation formula. We will first construct k polynomials `1, `2, . . . , `k, each of degree k−1, such
that `i(xi) = 1 and `i(xj) = 0 when i 6= j. (For example, `1(x1) = 1 and `1(x2) = · · · = `1(xk) = 0.)

Setting `1(x) = (x− x2)(x− x3) · · · (x− xk) would almost work: it is 0 in the right places, and has
the right degree, but it has the wrong value when x = x1. So we fix this by making

`1(x) =
(x− x2)(x− x3) · · · (x− xk)

(x1 − x2)(x1 − x3) · · · (x1 − xk)

and in general we set `i(x) =
∏
j 6=i

x− xj
xi − xj

.

To finish the construction, let f(x) = y1 · `1(x) + y2 · `2(x) + · · · + yk · `k(x). When we evaluate
f(xi), the ith term becomes yi · `i(xi) = yi, and all other terms vanish. So f(xi) = yi, as desired,
for each i.

So we have at least two approaches to find a polynomial that works: we can set up the system
Ma = y and solve it, or we can use the Lagrange interpolation formula and simplify. Sometimes
one approach works better than the other: for example, if all we want to do is evaluate the
polynomial at some other point xk+1, the Lagrange interpolation formula will probably be easier
to deal with.

2 Lines of best fit

Now suppose that we still have points (x1, y1), (x2, y2), . . . , (xk, yk), but instead of allowing a poly-
nomial of degree up to k− 1, we’re only willing to put up with a linear equation y = ax + b.

Of course, in this case, we can’t possibly hope to hit all the points exactly. Instead, we want to
minimize the errors in approximating each yi by a prediction axi + b.

But just saying this doesn’t fully specify the problem: we haven’t said how to aggregate the errors.
When are we willing to put up with a larger error for yi in exchange for a smaller error for yj?

One approach is to just add up the absolute errors:

Error(a, b) = |ax1 + b− y1|+ |ax2 + b− y2|+ · · ·+ |axk + b− yk|.

This is sometimes a reasonable thing to do. One drawback of this method is that the function is
not differentiable, so straightforward methods will not work here. (It is still convex, though, so
we can still optimize it with techniques we’ll learn later in this class. Also, minimizing this error
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function is a linear program, so if you’ve taken a linear programming class, you already know how
to do it.)

For now, we’ll consider a different aggregation method:

Error(a, b) = (ax1 + b− y1)
2 + (ax2 + b− y2)

2 + · · ·+ (axk + b− yk)2.

This is the squared norm ‖ax+ b1−y‖2, where x,y ∈ Rk are the vectors of x-values and y-values,
and 1 ∈ Rk is the all-ones vector. Minimizing the squared norm is equivalent to minimizing the
norm, which helps make sense of this method: we are minimizing the distance between the vector
of predicted values, ax + b1, and the vector of actual values, y.

We’ll develop some theory for this problem in the next lecture, but for now, we’ll solve it in the
straightforward way: by finding the critical points.

Here, a and b are the variable, so we compute ∂
∂a Error(a, b) and ∂

∂b Error(a, b).

For the first one, we have

∂

∂a
(axi + b− yi)

2 = 2(axi + b− yi) · xi

and therefore

∂

∂a
Error(a, b) =

k∑
i=1

2(axi + b− yi) · xi = 2(ax + b1− y) · x.

For the second, we have
∂

∂b
(axi + b− yi)

2 = 2(axi + b− yi)

and therefore

∂

∂b
Error(a, b) =

k∑
i=1

2(axi + b− yi) = 2(ax + b1− y) · 1.

To find the critical point of Error(a, b), we set both of these to 0. Then we have{
(ax + b1− y) · x = 0

(ax + b1− y) · 1 = 0
⇐⇒

{
(x · x)a + (1 · x)b = y · x
(x · 1)a + (1 · 1)b = y · 1

which gives us a 2× 2 system of equations to solve for a and b:[
x · x 1 · x
1 · x 1 · 1

] [
a
b

]
=

[
x · y
1 · y

]
.

This critical point is a global minimizer, because Error(a, b) is convex. Testing this with the Hessian
matrix is not too bad, but a quick way is to note that f(t) = t2 is convex (by the second derivative
test), so (axi+b−yi)2 is convex for each i (this is just a linear substitution), and therefore Error(a, b)
is convex (as a sum of convex functions).
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3 Examples

Suppose we just have the three points (−1, 1), (3, 1), (4, 8).

With k = 3 points, there should be a polynomial through them of degree k − 1 = 2: a quadratic
polynomial. To find it, we can set up the system1 −1 (−1)2

1 3 32

1 4 42

a0a1
a2

 =

1
1
8


and solve, or we can use Lagrange interpolation. If we do, we get

`1(x) =
(x− 3)(x− 4)

(−1− 3)(−1− 4)
, `2(x) =

(x + 1)(x− 4)

(3 + 1)(3− 4)
, `3(x) =

(x + 1)(x− 3)

(4 + 1)(4− 3)

and the polynomial

`1(x) + `2(x) + 8`3(x) =
1

20
(x− 3)(x− 4)− 1

4
(x + 1)(x− 4) +

8

5
(x + 1)(x− 3)

which simplifies to 7
5x

2 − 14
5 x−

16
5 .

To find a linear approximation, we take the matrix equation[
x · x 1 · x
1 · x 1 · 1

] [
a
b

]
=

[
x · y
1 · y

]
which becomes[

(−1)2 + 32 + 42 −1 + 3 + 4
−1 + 3 + 4 3

] [
a
b

]
=

[
(−1) · 1 + 3 · 1 + 4 · 8

1 + 1 + 8

]
⇐⇒

[
26 6
6 3

] [
a
b

]
=

[
34
10

]
.

Solving, we get a = 1 and b = 4
3 , representing the line y = x + 4

3 .
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