
Math 484: Nonlinear Programming1 Mikhail Lavrov

Chapter 4, Lecture 2: Least-squares fit

February 22, 2019 University of Illinois at Urbana-Champaign

1 The general least-squares problem

We can generalize the problems we looked at in the previous lecture in at least two ways:

1. We are given a set of points (x1, y1), (x2, y2), . . . , (xk, yk) and a degree d. We want to find
a polynomial f(x) of degree at most d whose values f(x1), f(x2), . . . , f(xk) are as close as
possible to y1, y2, . . . , yk.

2. We are given k inputs x(1),x(2), . . . ,x(k) ∈ Rn and k outputs y1, y2, . . . , yk ∈ R. We want to
find a linear function from Rn to R (that is, a function of the form f(x) = a · x + b) whose
values f(x(1)), f(x(2)), . . . , f(x(k)) are as close as possible to y1, y2, . . . , yk.

In both cases, “as close as possible” means we take the sum of squares of the errors, as we did
before.

These are really the same problem in disguise. In the first problem, if we write f(x) = adx
d +

ad−1x
d−1 + · · ·+ a0, then we want to minimize the distance between the vector

f(x1)
f(x2)

...
f(xk)

 =


adx

d
1 + ad−1x

d−1
1 + · · ·+ a0

adx
d
2 + ad−1x

d−1
2 + · · ·+ a0
...

adx
d
k + ad−1x

d−1
k + · · ·+ a0

 =


1 x1 x21 · · · xd1
1 x2 x22 · · · xd2
...

...
. . .

...
1 xk x2k · · · xdk



a0
a1
a2
...
ad


and a given vector y = (y1, y2, . . . , yk). In the second problem we want to minimize the distance
between the vector 

f(x(1))

f(x(2))
...

f(x(k))

 =


a · x(1) + b

a · x(2) + b
...

a · x(k) + b

 =


—x(1)T— 1

—x(2)T— 1
...

...

—x(k)T— 1



a1
a2
...
ak
b


and a given vector y = (y1, y2, . . . , yk).

So a common generalization of both problems is to minimize the function ‖Ax−y‖ over all x ∈ Rn,
given a matrix A and a vector y.

This is sometimes called the problem of solving an overconstrained system of equations, because if
the system

Ax = y

1This document comes from the Math 484 course webpage: https://faculty.math.illinois.edu/~mlavrov/

courses/484-spring-2019.html

1

https://faculty.math.illinois.edu/~mlavrov/courses/484-spring-2019.html
https://faculty.math.illinois.edu/~mlavrov/courses/484-spring-2019.html


had a solution x, we could use that solution to give ‖Ax − y‖ the smallest possible value: 0. So
the interesting case is where the system Ax = y is overconstrained: it has no solutions. Finding
a vector x that minimizes ‖Ax − y‖ is like finding the best approximate solution of the system
Ax = y.

2 A geometric characterization of the solution

We can rephrase the problem geometrically. If A is an m×n matrix, then the set V = {Ax : x ∈ Rn}
is a subspace of Rm: a line or plane or some other higher-dimensional object. Minimizing ‖Ax−y‖
means finding the point of V closest to a given vector y ∈ Rm.

A geometric intuition says that this point should be obtained by dropping a perpendicular from y
onto V , whatever that looks like. Here is a lemma that makes that precise:

Lemma 2.1. If V is the subspace {Ax : x ∈ Rn}, then the point Ax∗ ∈ V is the closest point of V
to y ∈ Rm if and only if

Ax∗ − y ⊥ a

for all a ∈ V .

Proof. Let’s remember the technique we used in Chapter 1 of taking the one-dimensional restriction
of a function.

Here, we are minimizing f(x) = ‖Ax − y‖2 for x ∈ Rn. (We square the distance to make the
expression simpler, which doesn’t change where the distance is minimized.) So let’s fix x∗ ∈ Rn

and define
φu(t) = f(x∗ + tu) = ‖A(x∗ + tu)− y‖2.

We know that x∗ is a global minimizer of f if and only if for every direction u, 0 is a global
minimizer of φu.

Let’s take a closer look at φu(t). Define a = Au. (If u is an arbitrary element of Rn, then a is an
arbitrary element of V .) Then

φu(t) = ‖Ax∗ − y + ta‖2

= (Ax∗ − y + ta) · (Ax∗ − y + ta)

= (Ax∗ − y) · (Ax∗ − y) + 2t(Ax∗ − y) · a + t2(a · a)

= ‖Ax∗ − y‖2 + 2t(Ax∗ − y) · a + t2‖a‖2.

So now we recognize this as a parabola.

Parabolas c2t
2 + c1t+ c0 are minimized at t = 0 precisely when c2 ≥ 0 and c1 = 0: upward-pointing

parabolas symmetric about the vertical axis. Here, c2 ≥ 0 for a fact: it’s a perfect square. So this
parabola is minimized at t = 0 if and only if, for every a ∈ V ,

2(Ax∗ − y) · a = 0,

or Ax∗ − y ⊥ a, which is the condition we wanted.

2



Another way to see this is to take the derivative φ′u(0) = 2(Ax∗ − y) · a. This is 0 exactly when
Ax∗ − y ⊥ a, and we get the same conclusion. (Here, φu is convex, so 0 is a global minimizer if
and only if it is a critical point.)

We can use this lemma to write down a system of linear equations to solve for x∗, called the normal
equation:

Theorem 2.1. A point x∗ ∈ Rn minimizes ‖Ax− y‖ if and only if

ATAx∗ = ATy.

Proof. Let a(1),a(2), . . . ,a(n) be the columns of A. These are elements of the subspace V = {Ax :
x ∈ Rn}: we can write a(i) as Ae(i), where e(i) is the ith standard basis vector.

By the lemma, if Ax∗ is the closest point of V to y, then Ax∗ − y ⊥ a(i), or

a(i) · (Ax∗ − y) = 0,

for i = 1, 2, . . . , n. Also, any element of V is a linear combination of a(1),a(2), . . . ,a(n), so these n
dot products capture the full content of the lemma: if all of them are 0, then Ax∗ − y ⊥ a for all
a ∈ V , and Ax∗ is the closest point of V to y.

To get a prettier-looking statement at the end, we now rephrase the condition “all n of these dot
products are 0” to turn it into the equation in the theorem. Stacking these dot products on top of
each other, we have 

a(1) · (Ax∗ − y)

a(2) · (Ax∗ − y)
...

a(n) · (Ax∗ − y)

 =


0
0
...
0


and the left-hand side of this equation is a matrix product: we can rewrite the equation as

AT(Ax∗ − y) = 0.

Now expand to ATAx∗ − ATy = 0, and move ATy to the other side to get the equation we
wanted.

Does there always exist such a minimizer x∗, and is it unique?

A result from linear algebra tells us that the rank of A is equal to the rank of ATA; in particular, if
A has full column rank, ATA is invertible. This is the nice case. If this happens, then the normal
equation has a unique solution x∗, and so there is a unique minimizer.

In this nice case, x∗ is given by
x∗ = (ATA)−1ATy.

We write A† for (ATA)−1AT, and call it the pseudoinverse of A, because A†y is a “pseudo-solution”
of the overconstrainted system Ax = y.

The matrix P = AA† is called a projection matrix: it maps y ∈ Rm to Py, the closest point in V
to y. We will have more to say about projection matrices in the next lecture. For now, a quick
exercise in matrix algebra is to check the following two properties of P :

3



• P 2 = P (P is idempotent).

• PT = P (P is symmetric).

What about the not-so-nice case where A does not have full column rank—when the vectors
a(1),a(2), . . . ,a(n) are linearly dependent?

If A does not have full column rank, then x∗ is not unique. However, dropping the redundant
columns of A does not change the vector space V = {Ax : x ∈ Rn}, so the closest point Ax∗ is still
unique. It just might have multiple representations with different x∗.

4


	The general least-squares problem
	A geometric characterization of the solution

