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1 The problem

Up until now, we have been looking at the problem of approximately solving an overconstrained
system: when Ax = b has no solutions, finding an x that is the closest to being a solution, by
minimizing ‖Ax− b‖.

Today, we go on to consider the opposite case: systems of equations Ax = b with infinitely many
solutions. For such equations, we want to find the solution with the smallest norm, solving the
optimization problem

minimize
x∈Rn

‖x‖

subject to Ax = b.

This problem looks different, but it is also a minimum distance problem. We need to find the
element of

S = {x ∈ Rn : Ax = b}

closest to 0.

In fact, we can reduce the problem of finding a minimum-norm solution to an instance of the
problem we’ve already solved. This will be a roundabout way to go, and in the end, we’ll prove a
theorem about how to get the answer directly.

2 Applying the least-squares technique

To turn the problem into one we already know how to solve, the first step is to understand the set
S = {x ∈ Rn : Ax = b}.

This kind of set is sometimes called an affine subspace: it looks just like a vector subspace of Rn,
except that it does not contain 0. From a linear algebra class, you may remember that we may
write S as S′ + x(0), where:

• x(0) is an arbitrary element of S: one particular vector in Rn satisfying Ax(0) = b.

• S′ is the solution set of the corresponding homogeneous equation: S′ = {y ∈ Rn : Ay = 0}.

(In particular, S′ is a vector subspace of Rn.)

• The notation S′ + x(0) means that we add x(0) to every element of S′.

So if we take the problem “find the element of S closest to 0” and translate it by the vector −x(0),
we turn it into a problem “find the element of S′ closest to −x(0)”, which is a problem we already
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know how to solve. If we take the solution to the new problem, and translate it back by x(0), we
solve the original problem.

This strategy is illustrated in the diagram below. The original problem is in black, and the trans-
formed problem is red. The point we’re trying to get closest to is marked by a � and the optimal
solution by a .

S = {x : Ax = b}

�
0 x(0)

S′ = {y : Ay = 0}

�
−x(0)

2.1 Example

What we’ve done doesn’t give us the full understanding of the problem yet, but we can already use
this idea to solve an example problem:

minimize
x∈R4

‖x‖

subject to 2x1 − x2 + x3 − x4 = 3,

x2 − x3 − x4 = 1.

By the usual Gaussian elimination, we can write down a generic solution to the system of equations.
If we add the second equation to the first, we get 2x1 − 2x4 = 4, or x1 − x4 = 2. This lets us solve
for x1 and x2 in terms of x3 − x4: x1 = 2 + x4, and x2 = 1 + x3 + x4. Therefore a generic solution
is

x =


2 + x4

1 + x3 + x4
x3
x4

 =


2
1
0
0

+ x3


0
1
1
0

+ x4


1
1
0
1

 .

So we’ve found a parametrization of the solution space in terms of a specific solution x(0) =
(2, 1, 0, 0), plus a description of the solutions to the homogeneous system Ay = 0.

After translating by −x(0) = (−2,−1, 0, 0), our problem becomes to find the linear combination of
(0, 1, 1, 0) and (1, 1, 0, 1) closest to x(0): the least-squares minimization

minimize
(x3,x4)∈R2

∥∥∥∥∥∥∥∥


0 1
1 1
1 0
0 1

[x3x4
]
−


−2
−1
0
0


∥∥∥∥∥∥∥∥ .
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From what we already know, we can solve this by solving the system

[
0 1 1 0
1 1 0 1

]
0 1
1 1
1 0
0 1

[x3x4
]

=

[
0 1 1 0
1 1 0 1

]
−2
−1
0
0

 ⇐⇒ [
2 1
1 3

] [
x3
x4

]
=

[
−1
−3

]

which leads us to the solution (x3, x4) = (0,−1). Substituting these values for x3 and x4 gives the
solution (x1, x2, x3, x4) = (1, 0, 0,−1) to the original problem.

3 The shortcut method

There is a simpler approach.

We know that if we’re trying to find the closest point y∗ ∈ S′ to the point −x(0), then the vector
from −x(0) to y∗ will be perpendicular to S′. Going back to the diagram:

S = {x : Ax = b}

�
0 x(0)

S′ = {y : Ay = 0}

�
−x(0)

We know from last week that the red arrow is perpendicular to S′. This is preserved by translation,
so the black arrow—which represents the vector x∗ we’re trying to find—is also perpendicular to
S′.

So we have a perpendicularity condition in the minimum-norm problem as well:

Lemma 3.1. A vector x∗ satisfying Ax∗ = b is the minimum-norm solution to the system of
equations Ax = b if and only if x∗ · y = 0 for all solutions y of the homogeneous system Ay = 0.

There’s another way to phrase this condition. From linear algebra, we know that the null space
and the row space of a matrix are orthogonal complements. So x∗ is orthogonal to the null space
of A (to all vectors y such that Ay = 0) precisely when x∗ is an element of the row space of A:
(x∗ = ATw for some w). For a proof of this, in case it was not covered in a linear algebra class
you took, see the next page.

Using this fact, we have:

Theorem 3.1. A vector x∗ satisfying Ax∗ = b is the minimum-norm solution to the system of
equations Ax = b if and only if it can be written as x∗ = ATw for some w.
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So the minimum-norm solution x∗ can be found by solving the system

AATw = b

for w, then setting x∗ = ATw.

Using this, finding the solution is much faster. Going back to the example problem

minimize
x∈R4

‖x‖

subject to 2x1 − x2 + x3 − x4 = 3,

x2 − x3 − x4 = 1.

we write down the system

[
2 −1 1 −1
0 1 −1 −1

]
2 0
−1 1
1 −1
−1 −1

[w1

w2

]
=

[
3
1

]
⇐⇒

[
7 −1
−1 3

] [
w1

w2

]
=

[
3
1

]

which gives us (w1, w2) = (12 ,
1
2) and the same final solution (x1, x2, x3, x4) = (1, 0, 0,−1).
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The orthogonal complement of the null space

For the sake of completeness—in case you did not see it in a linear algebra class, or have forgotten—
here is a proof that the row space and the null space of A are orthogonal complements. I’ve stated
this result here in exactly the form we need to use it in the lecture.

Theorem 3.2. Given an m× n matrix A, the following two conditions are equivalent for a vector
x∗ ∈ Rn:

(a) We can write x∗ as ATw for some w ∈ Rm.

(b) For all y ∈ Rn such that Ay = 0, we have x∗ · y = 0.

Proof. First, let’s suppose condition (a) holds for x∗: we can write x∗ as ATw. This means that
for all y such that Ay = 0, we have

x∗ · y = x∗Ty = (ATw)
T
y = wTAy = wT0 = 0

so condition (b) also holds for x∗.

Second, let’s suppose condition (a) does not hold x∗: we cannot write x∗ as ATw. What does this
mean? It means that, taking ATw = x∗ as an equation where w is the unknown, the equation has
no solution.

This can only happen because we can deduce a contradiction from ATw = x∗: by adding up the
rows of AT with some coefficients y1, y2, . . . , yn, we get a row of zeroes, and by adding up the entries
of x∗ with the same coefficients, we get a nonzero value.

Writing this down in matrix language, we get yTAT = 0T and yTx∗ 6= 0. In other words, there is
a vector y ∈ Rn such that Ay = 0, but x∗ · y 6= 0. So condition (b) also does not hold for x∗.
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