1 Two applications of Bolzano-Weierstrass

Last time, we discussed the Bolzano-Weierstrass theorem. Today, we're going to see some results it's good for. For reasons of time, we skip the proof; if you want to see it, it's in the lecture notes for the previous class.
Theorem 1.1 (Bolzano-Weierstrass). Let $S \subseteq \mathbb{R}^{n}$ be a closed and bounded set, and let $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots$ be any sequence of points in S.

Then we can pick out a subsequence of these points that has a limit $\mathbf{x} \in S$. Formally, we can find indices $i_{1}<i_{2}<i_{3}<\ldots$ such that the sequence $\mathbf{x}^{\left(i_{1}\right)}, \mathbf{x}^{\left(i_{2}\right)}, \mathbf{x}^{\left(i_{3}\right)}, \ldots$ converges to $\mathbf{x} \in S$.

Corollary 1.1 (Extreme value theorem). If $S \subseteq \mathbb{R}^{n}$ is a closed and bounded set, and $f: S \rightarrow \mathbb{R}$ is a continuous function, then f has a global maximizer on S.
(By applying this theorem to $-f$, we conclude that f also has a global minimizer.)
Proof. Our first step is to show (by contradiction) that f is bounded above on S.
Suppose not; then we can find points where f has arbitrarily large values. Let $\mathbf{x}^{(1)} \in S$ be a point with $f\left(\mathbf{x}^{(1)}\right)>1$; let $\mathbf{x}^{(2)} \in S$ be a point with $f\left(\mathbf{x}^{(2)}\right)>2$, and so on, with $f\left(\mathbf{x}^{(k)}\right)>k$.
Then the sequence $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \ldots$ has a subsequence $\mathbf{x}^{\left(i_{1}\right)}, \mathbf{x}^{\left(i_{2}\right)}, \ldots$ which converges to some $\mathbf{x}^{*} \in S$. Along this subsequence, we know that

- $\lim _{k \rightarrow \infty} f\left(\mathbf{x}^{\left(i_{k}\right)}\right)=+\infty$, because $f\left(\mathbf{x}^{\left(i_{k}\right)}\right)>i_{k}$ and $i_{k} \rightarrow \infty$ as $k \rightarrow \infty$,
- but also that $\lim _{k \rightarrow \infty} f\left(\mathbf{x}^{\left(i_{k}\right)}\right)=f\left(\mathbf{x}^{*}\right)$, because f is continuous.

This is a contradiction. So f must be bounded above.
Let M be the least upper bound on the set of values $\{f(\mathbf{x}): \mathbf{x} \in S\}$. Our second step is to show that there is some \mathbf{x}^{*} with $f\left(\mathbf{x}^{*}\right)=M$.
For all k, we know that $M-\frac{1}{k}$ is not an upper bound on f, so we can find some $\mathbf{x}^{(k)} \in$ S with $f\left(\mathbf{x}^{(k)}\right)>M-\frac{1}{k}$. This gives us a sequence $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}, \ldots$; it has a subsequence $\mathbf{x}^{\left(i_{1}\right)}, \mathbf{x}^{\left(i_{2}\right)}, \mathbf{x}^{\left(i_{3}\right)}, \ldots$ converging to $\mathbf{x}^{*} \in S$.
Since we have $M-\frac{1}{i_{k}}<f\left(\mathbf{x}^{\left(i_{k}\right)}\right) \leq M$, we can take the limit as $k \rightarrow \infty$ and get the inequality $M \leq f\left(\mathbf{x}^{*}\right) \leq M$. So $f\left(\mathbf{x}^{*}\right)=M$ and \mathbf{x}^{*} is the global maximizer we wanted.

[^0]Corollary 1.2 (Support theorem; Theorem 5.1.9). Let $C \subseteq \mathbb{R}^{n}$ be a convex set and let $\mathbf{z} \in \operatorname{bd}(C)$. Then there is an inequality supporting C at \mathbf{z} : we can choose $\mathbf{u} \in \mathbb{R}^{n}$ with $\|\mathbf{u}\|=1$ such that

$$
\mathbf{u} \cdot \mathbf{x} \leq \mathbf{u} \cdot \mathbf{z}
$$

for all $\mathbf{x} \in C$.
Proof. Since $\mathbf{z} \in \operatorname{bd}(C)$, we can find a sequence $\mathbf{y}^{(1)}, \mathbf{y}^{(2)}, \ldots \notin C$ converging to \mathbf{z}. For concreteness, here is one way to do this. For every k, the ball of radius $\frac{1}{k}$ around \mathbf{z} contains a point outside C, so let $\mathbf{y}^{(k)}$ be one such point: it will satisfy $\left\|\mathbf{y}^{(k)}-\mathbf{z}\right\| \leq \frac{1}{k}$.
For each $\mathbf{y}^{(k)}$, there is an inequality separating it from $\operatorname{cl}(C)$: some $\mathbf{a}^{(k)}$ such that

$$
\mathbf{a}^{(k)} \cdot \mathbf{x}<\mathbf{a}^{(k)} \cdot \mathbf{y}^{(k)} \text { for all } \mathbf{x} \in C
$$

We saw this as a corollary of the obtuse angle criterion in the previous lecture. Dividing through by $\left\|\mathbf{a}^{(k)}\right\|$, we get

$$
\frac{\mathbf{a}^{(k)}}{\left\|\mathbf{a}^{(k)}\right\|} \cdot \mathbf{x}<\frac{\mathbf{a}^{(k)}}{\left\|\mathbf{a}^{(k)}\right\|} \cdot \mathbf{y}^{(k)} \text { for all } \mathbf{x} \in C
$$

so $\mathbf{u}^{(k)}=\frac{\mathbf{a}^{(k)}}{\left\|\mathbf{a}^{(k)}\right\|}$ is a vector with $\|\mathbf{u}\|=1$ that satisfies $\mathbf{u}^{(k)} \cdot \mathbf{x}<\mathbf{u}^{(k)} \cdot \mathbf{y}^{(k)}$ for all $\mathbf{x} \in C$.
The points $\mathbf{u}^{(1)}, \mathbf{u}^{(2)}, \ldots$ are a sequence of points in the closed and bounded set $\left\{\mathbf{x} \in \mathbb{R}^{n}:\|\mathbf{x}\|=1\right\}$. This means we can pick out a subsequence of them converging to some $\mathbf{u} \in \mathbb{R}^{n}$ with $\|\mathbf{u}\|=1$.

Taking the limit of the inequality $\mathbf{u}^{(k)} \cdot \mathbf{x}<\mathbf{u}^{(k)} \cdot \mathbf{y}^{(k)}$ for this subsequence, we get $\mathbf{u} \cdot \mathbf{x} \leq \mathbf{u} \cdot \mathbf{z}$ for all $\mathbf{x} \in C$, which was what we wanted.

There are two ideas that show up in these proofs that are worth remembering. They show up again and again in applications of Bolzano-Weierstrass, not only in this subject, but in many others.

The first is the way we obtain the sequence we want. In both of our applications, we didn't start out with a sequence. Rather, we started out with a hypothesis that something is true for arbitrarily large, or arbitrarily small, values:

- If f is not bounded above, there are points \mathbf{x} with arbitrarily large values of f.
- If M is a least upper bound on f, there are points \mathbf{x} with $f(\mathbf{x})$ arbitrarily close to M.
- If \mathbf{z} is a boundary point of C, then there are points $\mathbf{y} \notin C$ arbitrarily close to \mathbf{z}.

To use this hypothesis, we choose a sequence of points where the parameter in question (value of f, or difference $M-f(\mathbf{x})$, or distance $\|\mathbf{y}-\mathbf{z}\|)$ gets arbitrarily close to its extreme. Then we apply Bolzano-Weierstrass.

The second idea shows up in the second proof. If we just took arbitrary inequalities $\mathbf{a} \cdot \mathbf{x}<\mathbf{a} \cdot \mathbf{y}$ at each step, we would have no control over \mathbf{a} : it can be any vector in \mathbb{R}^{n} other than $\mathbf{0}$. However, we can normalize to enforce $\|\mathbf{a}\|=1$, and then suddenly we are working over a closed and bounded set.

We can do this whenever we are looking at some property of nonzero vectors in \mathbb{R}^{n} that doesn't change when we scale them: assuming that the norm is 1 lets us work over a very convenient closed and bounded set, and apply either Bolzano-Weierstrass or the extreme value theorem.

2 Subgradients of convex functions

Recall that we proved earlier in this course that for any convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ with continuous first derivatives, and any $\mathbf{x}^{*} \in \mathbb{R}$, we have an inequality

$$
f(\mathbf{x}) \geq f\left(\mathbf{x}^{*}\right)+\nabla f\left(\mathbf{x}^{*}\right) \cdot\left(\mathbf{x}-\mathbf{x}^{*}\right) .
$$

That is, the graph of f always stays above its tangent lines or (in higher dimensions) tangent hyperplanes.

We are about to end up in a situation where our convex functions are unlikely to be differentiable everywhere. However, we can still make a similar claim.

Lemma 2.1. If $C \subseteq \mathbb{R}^{n}$ is a convex set, $f: C \rightarrow \mathbb{R}$ is a convex function, and $\mathbf{x}^{*} \in \operatorname{int}(C)$, then there exists some vector $\mathbf{d} \in \mathbb{R}^{n}$ such that

$$
f(\mathrm{x}) \geq f\left(\mathrm{x}^{*}\right)+\mathrm{d} \cdot\left(\mathrm{x}-\mathrm{x}^{*}\right) .
$$

That is, at any point \mathbf{x}^{*} in the interior of the domain of f, we can draw a hyperplane that acts like a tangent hyperplane at \mathbf{x}^{*} : just like the tangent hyperplane, it's always a lower bound.

Such a vector \mathbf{d} is called a subgradient of f at \mathbf{x}^{*}. The vector \mathbf{d} is not guaranteed to be unique (it is unique only in the special case where f is differentiable at \mathbf{x}^{*} and we can set $\left.\mathbf{d}=\nabla f\left(\mathbf{x}^{*}\right)\right)$.

We write $\partial f\left(\mathbf{x}^{*}\right)$ for the set of all subgradients of f at \mathbf{x}^{*}. This set is called the subdifferential of f at \mathbf{x}^{*}.

Before we proceed with the proof, here are two representative examples that you should keep in mind.

The first example is $f(x)=|x|$: a convex function which is not differentiable. We have $|x| \geq d x$ for any $d \in[-1,1]$; therefore, at $x^{*}=0$, then subdifferential of f is the entire interval $[-1,1]$. At other points, the only subgradient is the derivative.
The second example is $f(x)=-\sqrt{x}$: a convex function defined on $C=[0, \infty)$. It does not have a subgradient at $x^{*}=0$, because the only possible tangent line is vertical. This shows that the hypothesis $x^{*} \in \operatorname{int}(C)$ is necessary.

Proof. The basic idea is to use the epigraph epi (f). Recall that for a function f defined on $C \subseteq \mathbb{R}^{n}$, we define

$$
\operatorname{epi}(f)=\{(\mathbf{x}, y) \in C \times \mathbb{R}: y \geq f(\mathbf{x})\}
$$

When C is a convex set and f is a convex function on that set, the epigraph epi (f) is also convex (a convex subset of \mathbb{R}^{n+1}).

Pick an $\mathbf{x}^{*} \in \operatorname{int}(C)$. Then the point $\left(\mathbf{x}^{*}, f\left(\mathbf{x}^{*}\right)\right)$ is a boundary point of C. By the support theorem, there is some vector (\mathbf{a}, b) with norm 1 such that

$$
(\mathbf{a}, b) \cdot\left(\mathbf{x}^{*}, f\left(\mathbf{x}^{*}\right)\right) \geq(\mathbf{a}, b) \cdot(\mathrm{x}, y)
$$

for all $(\mathbf{x}, y) \in \operatorname{epi}(f)$. We can rewrite it as

$$
\mathbf{a} \cdot \mathbf{x}^{*}+b f\left(\mathbf{x}^{*}\right) \geq \mathbf{a} \cdot \mathbf{x}+b y
$$

In particular, since this is true for all $(\mathbf{x}, y) \in \operatorname{epi}(f)$, it's true for all points of the form $(\mathbf{x}, f(\mathbf{x}))$ with $\mathbf{x} \in C$, and we get the inequality

$$
\mathbf{a} \cdot \mathbf{x}^{*}+b f\left(\mathbf{x}^{*}\right) \geq \mathbf{a} \cdot \mathbf{x}+b f(\mathbf{x}),
$$

or

$$
b \cdot f(\mathbf{x}) \leq b \cdot f\left(\mathbf{x}^{*}\right)-\mathbf{a} \cdot\left(\mathbf{x}-\mathbf{x}^{*}\right) .
$$

If we show that $b<0$, then dividing by b will reverse the inequality, and we will get

$$
f(\mathbf{x}) \geq f\left(\mathbf{x}^{*}\right)-\frac{\mathbf{a}}{b} \cdot\left(\mathbf{x}-\mathbf{x}^{*}\right)
$$

and so the vector $-\frac{a}{b}$ is the subgradient we want.
There are two parts to this.

1. We have $b \leq 0$. To see this, take the inequality

$$
(\mathbf{a}, b) \cdot\left(\mathbf{x}^{*}, f\left(\mathbf{x}^{*}\right)\right) \geq(\mathbf{a}, b) \cdot(\mathbf{x}, y)
$$

with $\mathbf{x}=\mathbf{x}^{*}$ and $y=f\left(\mathbf{x}^{*}\right)+1$. This gives us

$$
\mathbf{a} \cdot \mathbf{x}^{*}+b \cdot f\left(\mathbf{x}^{*}\right) \geq \mathbf{a} \cdot \mathbf{x}^{*}+b \cdot\left(f\left(\mathbf{x}^{*}\right)+1\right)
$$

and cancelling like terms on both sides leaves us with $0 \geq b$.
2. We cannot have $b=0$. Here is where we use the fact that \mathbf{x}^{*} is an interior point of C.

If we had $b=0$, then our supporting inequality would simplify to $\mathbf{a} \cdot \mathbf{x}^{*} \geq \mathbf{a} \cdot \mathbf{x}$ for all $\mathbf{x} \in C$: a supporting inequality for \mathbf{x}^{*} itself. We still have $\|\mathbf{a}\|=1$ so in particular $\mathbf{a} \neq \mathbf{0}$.

Such an inequality can only hold if \mathbf{x}^{*} is a boundary point: after all, arbitrarily close to \mathbf{x}^{*}, we have points \mathbf{y} where $\mathbf{a} \cdot \mathbf{y}$ is bigger than $\mathbf{a} \cdot \mathbf{x}^{*}$. This contradicts our assumption.

Therefore $b<0$, and we get a subgradient.

[^0]: ${ }^{1}$ This document comes from the Math 484 course webpage: https://faculty.math.illinois.edu/~mlavrov/ courses/484-spring-2019.html

