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1 The Karush–Kuhn–Tucker theorem, gradient form

Last time, we proved:

Theorem 1.1 (Karush–Kuhn–Tucker theorem, saddle point form). Let P be any nonlinear pro-
gram. Suppose that x∗ ∈ S and λ∗ ≥ 0. Then x∗ is an optimal solution of P and λ∗ is a sensitivity
vector for P if and only if:

1. L(x∗,λ∗) ≤ L(x,λ∗) for all x ∈ S. (Minimality of x∗)

2. L(x∗,λ∗) ≥ L(x∗,λ) for all λ ≥ 0. (Maximality of λ∗)

3. λ∗i gi(x
∗) = 0 for i = 1, 2, . . . ,m. (Complementary slackness)

A much more practical form of the theorem, however, is the following:

Theorem 1.2 (Karush–Kuhn–Tucker theorem, gradient form). Let P be any nonlinear program
where f and g1, . . . , gm have continuous first partial derivatives. Suppose that x∗ ∈ int(S) is an
optimal solution of P , and λ∗ ≥ 0 is a sensitivity vector. Then

1. ∇xL(x∗,λ∗) = 0. That is, ∇f(x∗) +
m∑
i=1

λ∗i∇gi(x∗) = 0.

2. For each i, gi(x
∗) ≤ 0.

3. For each i, either λ∗i = 0 or gi(x
∗) = 0.

Furthermore, if P is a convex program, then the converse holds: if (x∗,λ∗) satisfy these conditions,
then x∗ is an optimal solution, and λ∗ is a sensitivity vector.

Proof. Here, we just transform minimality of x∗ and maximality of λ∗ into nicer forms to deal with.

Awkwardly, if x∗ is a boundary point of S, then we can’t say much; maybe there are better points
close to x∗, but they’re all outside S. (Maybe S consists only of the point x∗, in which case nothing
is guaranteed to be true.)

But if x∗ is an interior point of S, and a global minimizer of L(x,λ∗) (as a function of x), then it’s
a critical point. Taking the gradient of L(x,λ∗), we get

∇f(x∗) +
m∑
i=1

λ∗i∇gi(x∗) = 0.

1This document comes from the Math 484 course webpage: https://faculty.math.illinois.edu/~mlavrov/

courses/484-spring-2019.html

1

https://faculty.math.illinois.edu/~mlavrov/courses/484-spring-2019.html
https://faculty.math.illinois.edu/~mlavrov/courses/484-spring-2019.html


As for maximality of λ∗: since x∗ satisfies g(x∗) ≤ 0, L(x∗,λ) is a linear function of λ where all
coefficients gi(x

∗) are at most 0. So we want to set every component of λ∗ to 0, except possibly
the ones where gi(x

∗) = 0, since those don’t affect the value of L anyway.

Finally, if P is a convex program, then L(x,λ∗) is a convex function of x, so any critical point
is a global minimizer. This lets us go the other way, and conclude the minimality of x∗ from the
conditions in this theorem. The maximality of λ∗ always follows from conditions 2 and 3, because
we understand linear functions.

So in the convex case, we can recover all three parts of the saddle point form of the KKT theorem,
and then we use it to conclude that x∗ is an optimal solution and λ∗ is a sensitivity vector.

2 Example problem

Consider the convex program

(P )


minimize

x∈S

1

x+ y

subject to 2x+ y2 − 6 ≤ 0,

1− x ≤ 0,

1− y ≤ 0

where S = {(x, y) : x, y > 0}. This choice of S guarantees that the objective function is convex
on S, but also doesn’t constrain us in any way: a point that satisfies 1 − x ≤ 0 and 1 − y ≤ 0 is
guaranteed to be in the interior of S. The point (1.5, 1.5) (for example) demonstrates that (P ) is
superconsistent, and therefore the KKT theorem is guaranteed to solve the problem for us.

Setting the gradient of the Lagrangian to 0 gives us the equation[
− 1

(x+y)2

− 1
(x+y)2

]
+ λ1

[
2
2y

]
+ λ2

[
−1

0

]
+ λ3

[
0
−1

]
=

[
0
0

]
.

If you like terminology, this is sometimes called the stability condition.

We also have the complementary slackness equations

λ1(2x+ y2 − 6) = λ2(1− x) = λ3(1− y) = 0.

In theory, at this point, we could check 2 × 2 × 2 = 8 cases: either λ1 = 0 or 2x + y2 − 6 = 0,
either λ2 = 0 or 1 − x = 0, and either λ3 = 0 or 1 − y = 0. This is a fall-back option if you
can’t do anything clever, but fails to take advantage of the full power of the KKT theorem. (It is
essentially applying the method of Lagrange multipliers, checking which inequalities are actually
equations.)

In practice, we can often eliminate many cases at once. Sometimes it takes a clever strategy for
which case to look at first, but the worst thing that happens if you don’t guess the right case to
start with is you end up doing a bit more work.
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Here, let’s first consider the case λ1 = 0. Then the stability condition simplifies to[
− 1

(x+y)2

− 1
(x+y)2

]
+ λ2

[
−1

0

]
+ λ3

[
0
−1

]
=

[
0
0

]
which can only be satisfied by setting λ2 = λ3 = − 1

(x+y)2
. But this guarantees that λ2, λ3 < 0,

which is not allowed. So we can’t have λ1 = 0, and just like that we have rejected four of the eight
cases.

Since λ1 6= 0, we must have 2x+ y2− 6 = 0. Now, almost all of the remaining cases are ones where
we set either x = 1 or y = 1; in those cases, we can solve for both variables, so they’re easy to
check.

• Suppose we have x = 1. Then y2 − 4 = 0, so y = ±2, and y = 2 is the only one that satisfies
1− y ≤ 0. This gives us the point (x, y) = (1, 2).

Is this a valid solution? Going back to the stability condition, we have[
− 1

32

− 1
32

]
+ λ1

[
2
4

]
+ λ2

[
−1

0

]
+ λ3

[
0
−1

]
=

[
0
0

]
.

Since y 6= 1, we must have λ3 = 0. So we are left with two linear equations for λ1 and λ2:{
−1

9 + 2λ1 − λ2 = 0,

−1
9 + 4λ1 = 0.

This gives us λ1 = 1
36 and λ2 = − 1

18 . We reject this case, because λ2 < 0, which isn’t allowed.

• Suppose we have y = 1. Then 2x + 12 − 6 = 0, so x = 2.5. This gives us the point
(x, y) = (2.5, 1).

Is this a valid solution? Going back to the stability condition, we have[
− 1

3.52

− 1
3.52

]
+ λ1

[
2
2

]
+ λ2

[
−1

0

]
+ λ3

[
0
−1

]
=

[
0
0

]
.

Since x 6= 1, we must have λ2 = 0. So we are left with two linear equations for λ1 and λ3:{
− 4

49 + 2λ1 = 0,

− 4
49 + 2λ1 − λ3 = 0.

This gives us λ1 = 2
49 and λ3 = 0, satisfying all the conditions.

At this point, we can stop, because we’ve already found a valid solution: (x, y) = (2.5, 1) and
λ = ( 2

49 , 0, 0). Since P is a convex program, there is only one solution to the gradient KKT
conditions, and it is the correct one.

If we didn’t stop, then the remaining case to consider would be the one where neither x = 1 nor
y = 1, where we are forced to take λ2 = λ3 = 0 by complementary slackness. It turns out that
having λ2 = λ3 = 0 is impossible when x 6= 1 and y 6= 1.
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3 A summary of what we know

Ultimately, we want to find the optimal solution x∗ of P . We also have this object we’re calling a
sensitivity vector λ∗ which we may or may not care about.

We have two sets of conditions that x∗ ∈ S and λ∗ ≥ 0 can satisfy: the saddle point KKT conditions
(that is, conditions 1–3 in the saddle point KKT theorem) and the gradient KKT conditions (that
is, conditions 1–3 in the gradient KKT theorem).

The chart below summarizes the relationship between them. Each arrow is labeled with the addi-
tional conditions we need to go from one statement to another.

x∗ is an optimal
solution of P

λ∗ exists
(e.g. Slater condition)

unconditional

Saddle point KKT
conditions

continuous ∇’s
x∗ ∈ int(S)

P is convex

Gradient KKT
conditions

In more detail:

• If x∗ is an optimal solution of P , then to conclude that x∗ satisfies the saddle point KKT
conditions (together with some λ∗ ≥ 0) we need to know that a sensitivity vector exists.

One condition that guarantees this is the Slater condition. The Slater condition holds if P
is convex and superconsistent: that is, there is some feasible solution x for which the strict
inequality g(x) < 0 holds.

• If x∗ ∈ S and λ∗ ≥ 0 satisfy the saddle point KKT conditions, then we don’t need any further
hypotheses to conclude that x∗ is an optimal solution.

• If x∗ ∈ S and λ∗ ≥ 0 satisfy the saddle point KKT conditions, then to get from there to the
gradient KKT conditions, we need two things.

We need f and g1, g2, . . . , gm to have continuous partial derivatives, so that a global minimizer
of L(x,λ∗) is a critical point.

We also need x∗ ∈ int(S), because a global minimizer on the boundary of S might still not
be a critical point.

• If x∗ ∈ S and λ∗ ≥ 0 satisfy the gradient KKT conditions, and P is convex, then they also
satisfy the saddle point KKT conditions.
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