Math 484: Nonlinear Programming ${ }^{1}$	Mikhail Lavrov
Chapter 5, Lecture 9: The Geometric Programming Dual	
April 1, 2019	University of Illinois at Urbana-Champaign

1 The geometric programming dual, in general

In general, a constrained geometric program has positive variables $t_{1}, t_{2}, \ldots, t_{m}$. It has the form

$$
(G P) \quad \begin{cases}\underset{\mathbf{t}>\mathbf{0}}{\operatorname{minimize}} & \operatorname{Term}_{1}(\mathbf{t})+\cdots+\operatorname{Term}_{n_{1}}(\mathbf{t}) \\ \text { subject to } & \operatorname{Term}_{n_{1}+1}(\mathbf{t})+\cdots+\operatorname{Term}_{n_{2}}(\mathbf{t}) \leq 1 \\ & \operatorname{Term}_{n_{2}+1}(\mathbf{t})+\cdots+\operatorname{Term}_{n_{3}}(\mathbf{t}) \leq 1 \\ & \cdots \\ & \operatorname{Term}_{n_{k-1}+1}(\mathbf{t})+\cdots+\operatorname{Term}_{n_{k}}(\mathbf{t}) \leq 1\end{cases}
$$

Each term $\operatorname{Term}_{i}(\mathbf{t})=C_{i} t_{1}^{\alpha_{i 1}} t_{2}^{\alpha_{i 2}} \cdots t_{m}^{\alpha_{i m}}$ is a posynomial term : $C_{i}>0$ and $\alpha_{i 1}, \ldots, \alpha_{i m}$ are arbitrary real numbers. For each of the terms, whether it appeared in the objective function or in a constraint, we have a dual variable δ_{i}.

The dual objective function $v(\boldsymbol{\delta})$ is the product of:

- A $\left(\frac{C_{i}}{\delta_{i}}\right)^{\delta_{i}}$ factor for each dual variable.
- For each constraint, we have a special factor:

$$
\left(\delta_{n_{i}+1}+\delta_{n_{i}+2}+\cdots+\delta_{n_{i+1}}\right)^{\delta_{n_{i}+1}+\delta_{n_{i}+2}+\cdots+\delta_{n_{i+1}}}
$$

The variables that appear in this factor correspond to the terms that appear in that constraint. The dual problem has the following constraints:

- For each primal variable t_{j}, we get a constraint

$$
\delta_{1} \alpha_{11}+\delta_{2} \alpha_{21}+\cdots+\delta_{n} \alpha_{n 1}=0
$$

where the coefficient of δ_{i} is the power of t_{j} in the $i^{\text {th }}$ term $\operatorname{Term}_{i}(\mathbf{t})$.

- There is a normalization constraint $\delta_{1}+\delta_{2}+\cdots+\delta_{n_{1}}=1$, where $\delta_{1}, \delta_{2}, \ldots, \delta_{n_{1}}$ are the dual variables corresponding to the terms in the primal objective function.
- There is a positivity constraint $\boldsymbol{\delta}>\mathbf{0}$. It has an exception: for each constraint, we are allowed to set all dual variables from that constraint to 0 simultaneously. (For the purposes of evaluating $v(\boldsymbol{\delta})$, we assume that $0^{0}=1$ in this case.)

[^0]
1.1 Wait. . . positivity constraint?

Okay, when we derived the constraints on the geometric programming dual last time, we did not have any kind of requirement that $\boldsymbol{\delta}>\mathbf{0}$. We just had $\boldsymbol{\delta} \geq \mathbf{0}$, because we started from $\boldsymbol{\lambda} \geq \mathbf{0}$, which is always there in the KKT dual.
In deriving the dual program, we set the $i^{\text {th }}$ term of the geometric program equal to $e^{z_{i}}$, and the Lagrangian contained the expression $e^{z_{i}}-\lambda_{i} z_{i}$ (for a term in the objective function) or the expression $\mu_{j} e^{z_{i}}-\lambda_{i} z_{i}$ (for a term in the $j^{\text {th }}$ constraint). This is minimized (as a function of z_{i}) when $z_{i}=\log \lambda_{i}$, or when $z_{i}=\log \frac{\lambda_{i}}{\mu_{j}}$, respectively.
This doesn't work when $\lambda_{i}=0$. In that case, $e^{z_{i}}$ or $\mu_{k} e^{z_{i}}$ is minimized by taking $z_{i} \rightarrow-\infty$. This happens when we'd like to set $\operatorname{Term}_{i}(\mathbf{t})=0$, but we can only make it arbitrarily small; for example, if you're minimizing $1+\frac{1}{x}$, you'd like to take $x \rightarrow \infty$ to get as close to 1 as possible.

But this does not actually correspond to a feasible primal solution, and so we forbid this from happening. Instead, we require $\boldsymbol{\delta}>0$, to limit ourselves only to cases where the primal program will have an optimal solution.

There is an exception to the exception. Suppose that μ_{j}, the dual variable corresponding to the constraint $e^{z_{n_{j}+1}}+\cdots+e^{z_{n_{j+1}}} \leq 1$, is 0 . In this case, the expression $\mu_{j} e^{z_{i}}-\lambda_{i} z_{i}$ simply becomes $-\lambda_{i} z_{i}$, and we must set $\lambda_{i}=0$ to make $h(\boldsymbol{\mu}, \boldsymbol{\lambda})>-\infty$.

This gives us a weird positivity constraint. The dual variables corresponding to the terms in the objective function must be always positive. The other dual variables have an escape clause: they are usually positive, but we can set some of them to 0 , as long as all or none of the dual variables from any given primal constraint are 0 . Intuitively, this corresponds to the case where a constraint is unnecessary.

2 Using a dual solution to find a primal solution

Once the optimal dual solution $\boldsymbol{\delta}^{*}$ is found, we can use it to find an optimal primal solution \mathbf{t}^{*}. To do so, we use the following equations; essentially, we know the values of many of the terms in the primal program.

2.1 Terms appearing in the objective function

As before, with the unconstrained geometric program, when $\boldsymbol{\delta}^{*}$ is an optimal dual solution, the optimal primal solution is found by solving:

$$
\operatorname{Term}_{1}\left(\mathbf{t}^{*}\right)=\delta_{1}^{*} v\left(\boldsymbol{\delta}^{*}\right), \quad \operatorname{Term}_{2}\left(\mathbf{t}^{*}\right)=\delta_{2}^{*} v\left(\boldsymbol{\delta}^{*}\right), \quad \ldots, \quad \operatorname{Term}_{n_{1}}\left(\mathbf{t}^{*}\right)=\delta_{n_{1}}^{*} v\left(\boldsymbol{\delta}^{*}\right)
$$

Where does this come from in the KKT dual?
We have $z_{i}=\log \lambda_{i}$, or $\operatorname{Term}_{i}\left(\mathbf{t}^{*}\right)=e^{z_{i}}=\lambda_{i}$. But we don't have access to λ_{i} directly: we just have the normalized variable δ_{i}. So by default, we just know that the proportions

$$
\operatorname{Term}_{1}\left(\mathbf{t}^{*}\right): \operatorname{Term}_{2}\left(\mathbf{t}^{*}\right): \cdots: \operatorname{Term}_{n_{1}}\left(\mathbf{t}^{*}\right) \quad \text { and } \quad \delta_{1}: \delta_{2}: \cdots: \delta_{n_{1}}
$$

are equal.

But recall that when the primal and dual have an optimal solution, their objective values are equal. The dual objective value is $v\left(\boldsymbol{\delta}^{*}\right)$. So we must have

$$
\operatorname{Term}_{1}\left(\mathbf{t}^{*}\right)+\operatorname{Term}_{2}\left(\mathbf{t}^{*}\right)+\cdots+\operatorname{Term}_{n_{1}}\left(\mathbf{t}^{*}\right)=v\left(\boldsymbol{\delta}^{*}\right)
$$

and this, together with the ratios between the terms, tells us their values.

2.2 Terms appearing in active constraints

Every primal constraint whose dual variables are positive is an active constraint: the value of the left-hand side is not just at most 1 but equal to 1 . For all such constraints, we have

$$
\operatorname{Term}_{n_{i}+1}\left(\mathbf{t}^{*}\right)=\frac{\delta_{n_{i}+1}^{*}}{\delta_{n_{i}+1} *+\cdots+\delta_{n_{i+1}}^{*}}, \quad \ldots, \quad \operatorname{Term}_{n_{i+1}}\left(\mathbf{t}^{*}\right)=\frac{\delta_{n_{i+1}}^{*}}{\delta_{n_{i}+1} *+\cdots+\delta_{n_{i+1}}^{*}} .
$$

Where does this come from in the KKT dual?
We have $z_{i}=\log \frac{\lambda_{i}}{\mu_{j}}$ for such a term, or $\operatorname{Term}_{i}\left(\mathbf{t}^{*}\right)=e^{z_{i}}=\frac{\lambda_{i}}{\mu_{j}}$. Again, we don't have access to the $\boldsymbol{\lambda}$ vector directly, just its normalized version $\boldsymbol{\delta}$. So by default, all we can say is that the proportions

$$
\operatorname{Term}_{n_{i}+1}\left(\mathbf{t}^{*}\right): \operatorname{Term}_{n_{i}+2}\left(\mathbf{t}^{*}\right): \cdots: \operatorname{Term}_{n_{i+1}}\left(\mathbf{t}^{*}\right) \quad \text { and } \quad \delta_{n_{i}+1}: \delta_{n_{i}+2}: \cdots: \delta_{n_{i+1}}
$$

are equal.
But for an active constraint, the sum

$$
\operatorname{Term}_{n_{i}+1}\left(\mathbf{t}^{*}\right)+\operatorname{Term}_{n_{i}+2}\left(\mathbf{t}^{*}\right)+\cdots+\operatorname{Term}_{n_{i+1}}\left(\mathbf{t}^{*}\right)
$$

must be equal to 1 . So using this, and the ratio between the terms, we can find out what the values of the terms are.

3 Example

The geometric program

$$
(G P) \quad \begin{cases}\underset{x, y, z>0}{\operatorname{minimize}} & \frac{1}{x y z} \\ \text { subject to } & x+y \leq 1 \\ & y+z \leq 1\end{cases}
$$

has dual
(D)

$$
\begin{cases}\underset{\delta \in \mathbb{R}^{5}}{\operatorname{maximize}} & \left(\frac{1}{\delta_{1}}\right)^{\delta_{1}}\left(\frac{1}{\delta_{2}}\right)^{\delta_{2}}\left(\frac{1}{\delta_{3}}\right)^{\delta_{3}}\left(\frac{1}{\delta_{4}}\right)^{\delta_{4}}\left(\frac{1}{\delta_{5}}\right)^{\delta_{5}}\left(\delta_{2}+\delta_{3}\right)^{\delta_{2}+\delta_{3}}\left(\delta_{4}+\delta_{5}\right)^{\delta_{4}+\delta_{5}} \\ \text { subject to } & -\delta_{1}+\delta_{2}=0 \\ & -\delta_{1}+\delta_{3}+\delta_{4}=0 \\ & -\delta_{2}+\delta_{5}=0 \\ & \delta_{1}=1 \\ & \boldsymbol{\delta}>\mathbf{0} \text { with exceptions } \delta_{2}=\delta_{3}=0 \text { and } \delta_{4}=\delta_{5}=0 .\end{cases}
$$

From $\delta_{1}=1$, we deduce that $\delta_{2}=\delta_{5}=1$, and $\delta_{3}+\delta_{4}=1$. Solving for δ_{3} and δ_{4} would require evaluating the objective function

$$
v\left(1,1, \delta_{3}, \delta_{4}, 1\right)=\left(\frac{1}{\delta_{3}}\right)\left(\frac{1}{\delta_{4}}\right)\left(1+\delta_{3}\right)^{1+\delta_{3}}\left(1+\delta_{4}\right)^{1+\delta_{4}}
$$

and trying to maximize it. But, intuitively, we want $\delta_{3}=\delta_{4}$ by symmetry, and so the optimal dual solution is $\boldsymbol{\delta}=\left(1,1, \frac{1}{2}, \frac{1}{2}, 1\right)$.
In theory, we can compute $v(\boldsymbol{\delta})=\frac{27}{4}$, and deduce that $\frac{1}{x y z}=\frac{27}{4}$ as well. If we're lazy, we can skip this step, because computing $v(\boldsymbol{\delta})$ is painful, and we have many active constraints to choose from.

Since δ_{2}, δ_{3} are nonzero, we have

$$
\operatorname{Term}_{2}(x, y, z)=\frac{\delta_{2}}{\delta_{2}+\delta_{3}}, \operatorname{Term}_{3}(x, y, z)=\frac{\delta_{3}}{\delta_{2}+\delta_{3}}
$$

and so $x=\frac{2}{3}, y=\frac{1}{3}$.
Similarly, since δ_{4}, δ_{5} are nonzero, we have

$$
\operatorname{Term}_{4}(x, y, z)=\frac{\delta_{4}}{\delta_{4}+\delta_{5}}, \operatorname{Term}_{5}(x, y, z)=\frac{\delta_{5}}{\delta_{4}+\delta_{5}}
$$

and so $y=\frac{1}{3}, z=\frac{2}{3}$.
This tells us the primal optimal solution.
(It's also a confirmation that the choice $\delta_{3}=\delta_{4}=\frac{1}{2}$ was correct: if we chose anything else, these two steps would have given us different values for y.)

[^0]: ${ }^{1}$ This document comes from the Math 484 course webpage: https://faculty.math.illinois.edu/~mlavrov/ courses/484-spring-2019.html

