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1 Equality constraints in the KKT theorem

Suppose that we want to solve an optimization problem such as

(P )

{
minimize

x∈S
f(x)

subject to g(x) = 0.

(To simplify matters, for now there is only one constraint, and it is an equality constraint.)

The KKT theorem generally deals with inequality constraints. Can we make it work here?

We can encode a single equality constraint as two inequalities, and rewrite the problem as

(P ′)


minimize

x∈S
f(x)

subject to g(x) ≤ 0,

−g(x) ≤ 0.

But because these two constraints are identical except for the sign, some further simplifications
occur. Writing down the Lagrangian of P ′ gives us

L(x, λ1, λ2) = f(x) + λ1g(x) + λ2(−g(x)) = f(x) + (λ1 − λ2)g(x).

So let’s define a new variable µ equal to λ1 − λ2. Even though we are required to have λ1, λ2 ≥ 0,
their difference isn’t constrained to be nonnegative: we can achieve any desired value of µ by setting
λ1 = max{λ2, 0} and λ2 = max{−λ2, 0}. (This is only one of many ways to get µ.)

Complementary slackness becomes a redundant condition: since we have g(x) = 0 for a feasible x
anyway, we don’t learn anything from the equation µg(x) = 0.

So the effect of the equality constraint is that the corresponding dual variable is allowed to be
any real number. This generalizes. We can have a mix of equality and inequality constraints: a
program of the form

(P )


minimize

x∈S
f(x)

subject to gi(x) ≤ 0, i = 1, 2, . . . ,m

hj(x) = 0, j = 1, 2, . . . , `.

Then the saddle point KKT theorem tells us the following. Suppose that x∗ ∈ S, λ∗ ∈ Rm with
λ∗ ≥ 0, and µ∗ ∈ R` satisfy:
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1. L(x∗,λ∗,µ∗) ≤ L(x,λ∗,µ∗) for all x∗ ∈ Rn

2. L(x∗,λ∗,µ∗) ≥ L(x∗,λ,µ) for all λ ∈ Rm and µ ∈ R` with λ ≥ 0:

3. For i = 1, . . . ,m, λ∗i gi(x
∗) = 0, and for j = 1, . . . , `, hi(x

∗) = 0.

Then x∗ is an optimal solution of P . Here, L(x,λ,µ) is the Lagrangian

L(x,λ,µ) = f(x) +
m∑
i=1

λigi(x) +
∑̀
j=1

µjhj(x).

The gradient form of the KKT theorem is changed similarly. Recall that in the gradient form of
the KKT, we are already required to check that x is feasible ourselves: we don’t get it for free.
So there’s no form of complementary slackness at all for h1, h2, . . . , h`: the only constraint on the
µ-variables comes from the equation ∇xL(x,λ,µ) = 0.

It doesn’t quite make sense to think of µ as a sensitivity vector anymore. However, there is still a
more general form of the Slater condition:

Theorem 1.1. Suppose that P is convex: S is a convex set, f, g1, g2, . . . , gm are convex func-
tions and h1, h2, . . . , h` are linear functions (possibly with a constant term). We say that P is
superconsistent if there is a point x ∈ S with gi(x) < 0 for i = 1, . . . ,m.

If P is superconsistent and x∗ is an optimal solution of P , then there are (λ∗,µ∗) that, together
with x∗, satisfy the conditions of the saddle point KKT theorem.

Intuitively, this is our definition of a convex program because that we want both hi and −hi to be
convex functions. This only happens if h1, h2, . . . , h` are all linear. In that case, the feasible region
of P is a convex set, despite the equality constraints.

The reason that this slightly-more-general notion of superconsistency still works is that, when we
impose some linear equality constraints, we are essentially optimizing over an affine subspace of
Rn, which looks like Rk for some k ≤ n. Working in this subspace, we can apply the usual form of
the KKT theorem and the Slater condition.

2 Equality constraints in the penalty method

Compared with this, the penalty method is simpler to work with. In fact, the penalty method
only gets less complicated when our constraints are equality constraints. To enforce a constraint
h(x) = 0 in the penalty method, we simply add the penalty term k · h(x)2, with no weird +

operator.

In theory, we could prove that this works (and that all of our results continue to apply when we
do this) by writing h(x) = 0 as h(x) ≤ 0 and −h(x) ≤ 0, and noticing that the penalty terms for
these two constraints simplify to the constraint above. But it just makes sense that this penalty
method does what we want it to do.
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3 Equality constraints in geometric programming

Finally, let’s consider what happens when we get creative with the constraints of a geometric
program.

A general geometric program looks like

(GP )


minimize

t∈Rm
g0(t)

subject to gi(t) ≤ 1, 1 ≤ i ≤ m,
t > 0

where g0, g1, . . . , gm are posynomials.

There is some flexibility here. For any C > 0, we can deal with the constraint g(t) ≤ C, by
rewriting it as C−1g(t) ≤ 1.

But this cannot be done with a negative C, because the coefficients in a posynomial cannot be
positive. Similarly, we cannot add the constraint g(t) ≥ 1 to a geometric program: there is no
way to put that constraint in standard form. (We can’t rewrite it as −g(t) ≤ −1: this is not a
posynomial constraint!) Equality constraints are equally impossible.

There is one exception. Suppose that g(t) is a posynomial with only one term. (A posymonomial??)
Then we can write down the constraint g(t) ≥ 1, by taking the reciprocal of both sides and writing

down 1
g(t) ≤ 1. And together, the two constraints g(t)

C ≤ 1 and C
g(t) ≤ 1 encode an equality

constraint g(t) = C.

Let’s look at what this actually does to the dual. Consider the geometric program

minimize
x,y∈R

3x+ y

subject to x2y = 12.

We first put this in standard form as:

minimize
x,y∈R

3x+ y

subject to
1

12
x2y ≤ 1,

12x−2y−1 ≤ 1.

Writing down the dual, we get

minimize
δ1,δ2,δ3,δ4

(
3

δ1

)δ1 ( 1

δ2

)δ2 (1/12

δ3

)δ3 (12

δ4

)δ4
δδ33 δ

δ4
4

subject to δ1 + 2δ3 − 2δ4 = 0,

δ2 + δ3 − δ4 = 0,

δ1 + δ2 = 1

with some rather special positivity constraints: we get δ1, δ2 > 0 as usual, but for δ3 we have “δ3 > 0
or δ3 = 0” and for δ4 we have “δ4 > 0 or δ4 = 0”, which can just be written as δ3, δ4 ≥ 0.
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Next, things simplify a lot. We can rewrite this dual geometric program as

minimize
δ1,δ2,δ3,δ4

(
3

δ1

)δ1 ( 1

δ2

)δ2 ( 1

12

)δ3−δ4
subject to δ1 + 2(δ3 − δ4) = 0,

δ2 + (δ3 − δ4) = 0,

δ1 + δ2 = 1,

δ1, δ2 > 0, δ3, δ4 ≥ 0.

Every time we see δ3 or δ4 in this program, we are always looking at the difference δ3 − δ4. Even
though δ3 and δ4 are nonnegative, their difference can be anything. So by making the substitution
η = δ3 − δ4, we get a simpler dual

minimize
δ1,δ2,η

(
3

δ1

)δ1 ( 1

δ2

)δ2 ( 1

12

)η
subject to δ1 + 2η = 0,

δ2 + η = 0,

δ1 + δ2 = 1,

δ1, δ2 > 0.

(The value of η doesn’t do anything for us when we are trying to go from the dual back to the
primal, apart from being part of the dual objective function. But the constraint that x2y = 12 will
be very useful.)

There is one more trick that can make our geometric programs more flexible. Suppose we have the
optimization problem

minimize
x,y∈R

√
x2 + y2 + xy

subject to
1

x
+

1

y
≤ 1,

x, y > 0.

What is this nonsense?
√
x2 + y2 doesn’t even look like a posynomial.

We can make this work by adding a third variable z, and replace
√
x2 + y2 by z. To relate this

to the original problem, we ask that z ≥
√
x2 + y2 (and since we’re minimizing, z will actually be

equal to this lower bound), which we can encode as a posynomial constraint:

minimize
x,y,z∈R

z + xy

subject to
1

x
+

1

y
≤ 1,

x2

z2
+
y2

z2
≤ 1,

x, y, z > 0.

4


	Equality constraints in the KKT theorem
	Equality constraints in the penalty method
	Equality constraints in geometric programming

