> Math 484: Nonlinear Programming $$
\text { Homework } \# 10
$$

Mikhail Lavrov

Spring 2019
Due Monday, April 29

1. If we use the method of steepest descent to minimize $f(x, y)=x^{2}-x y+y^{2}$ starting from $\left(x_{0}, y_{0}\right)=(1,2)$, compute the general form of the $k^{\text {th }}$ iteration $\left(x_{k}, y_{k}\right)$.
(You will get slightly different expressions for odd k and for even k. You might want to begin by finding the first few points to see the pattern.)
2. Suppose that we want to use a descent method to minimize $f(x, y, z)=x^{4}+y^{2}+z^{2}-10 x z$ starting from the point $\mathbf{x}^{(0)}=(1,1,1)$.
Find a value of μ for which $-\left(H f\left(\mathbf{x}^{(0)}\right)+\mu I\right)^{-1} \nabla f\left(\mathbf{x}^{(0)}\right)$ will be a descent direction.
3. Suppose that we want to use a descent method to minimize $f(x, y)=x^{3}+y^{3}$ starting from the point $\mathbf{x}^{(0)}=(1,2)$ in the direction $\mathbf{p}^{(0)}=(1,-1)$.
Find the range of the values t_{0} such that going from $\mathbf{x}^{(0)}$ to

$$
\mathbf{x}^{(1)}=\mathbf{x}^{(0)}+t_{0} \mathbf{p}^{(0)}
$$

will satisfy the criteria of Wolfe's theorem, with constants $\alpha=\frac{1}{4}$ and $\beta=\frac{1}{2}$.
4. For the matrix

$$
A=\left[\begin{array}{rr}
1 & 3 \\
3 & -1
\end{array}\right]
$$

find the "rank-one update" matrix U such that

$$
(A+U)\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

while

$$
(A+U)\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=A\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
$$

