Math 484: Nonlinear Programming

Mikhail Lavrov

Homework #2

Spring 2019

Due Friday, February 1

1. Using any method you like, classify the matrices below as positive (semi)definite, negative (semi)definite, or indefinite.

	$\left\lceil -1 \right\rceil$	0	0		$\lceil 2 \rceil$	1	4]		1	-2	0
(a)	0	2	0	(b)	1	3	1	(c)	-2	4	0
	0	0	1		4	1	-1		0	0	3

2. Find the 3×3 symmetric matrix A whose associated quadratic form $\mathbf{x}^{\mathsf{T}}A\mathbf{x}$ is $(x_1 + 2x_2 - x_3)^2$.

Without computing any determinants or eigenvalues, how can you quickly tell that this quadratic form is positive semidefinite, but not positive definite?

3. Find the critical points of the function

$$f(x,y) = x^2 + y^3 - 3xy.$$

Use the Hessian matrix of f to classify them as local minimizers, local maximizers, neither, or "can't tell based on the Hessian matrix only".

4. Classify the functions below as coercive or not coercive.

(a)
$$f(x,y) = \frac{x^4}{x^2 + 1} + |y|.$$

(b)
$$g(x,y) = e^x + 2y^2$$
.

- (c) $h(x,y) = (x-y)^2$.
- 5. (Only 4-credit students need to do this problem.)
 - (a) Suppose a symmetric $n \times n$ matrix A has a factorization $A = B^{\mathsf{T}}B$. Show that A is positive semidefinite.
 - (b) Suppose that A is positive semidefinite. Find a factorization $A = B^{\mathsf{T}}B$.

(Hint: start with the spectral theorem.)