Math 484: Nonlinear Programming	Mikhail Lavrov
Spring 2019	Homework \#2

1. Using any method you like, classify the matrices below as positive (semi)definite, negative (semi)definite, or indefinite.
(a) $\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{rrr}2 & 1 & 4 \\ 1 & 3 & 1 \\ 4 & 1 & -1\end{array}\right]$
(c) $\left[\begin{array}{rrr}1 & -2 & 0 \\ -2 & 4 & 0 \\ 0 & 0 & 3\end{array}\right]$
2. Find the 3×3 symmetric matrix A whose associated quadratic form $\mathbf{x}^{\top} A \mathbf{x}$ is $\left(x_{1}+2 x_{2}-x_{3}\right)^{2}$. Without computing any determinants or eigenvalues, how can you quickly tell that this quadratic form is positive semidefinite, but not positive definite?
3. Find the critical points of the function

$$
f(x, y)=x^{2}+y^{3}-3 x y .
$$

Use the Hessian matrix of f to classify them as local minimizers, local maximizers, neither, or "can't tell based on the Hessian matrix only".
4. Classify the functions below as coercive or not coercive.
(a) $f(x, y)=\frac{x^{4}}{x^{2}+1}+|y|$.
(b) $g(x, y)=e^{x}+2 y^{2}$.
(c) $h(x, y)=(x-y)^{2}$.
5. (Only 4-credit students need to do this problem.)
(a) Suppose a symmetric $n \times n$ matrix A has a factorization $A=B^{\top} B$. Show that A is positive semidefinite.
(b) Suppose that A is positive semidefinite. Find a factorization $A=B^{\top} B$.
(Hint: start with the spectral theorem.)

