Math 484: Nonlinear Programming	Mikhail Lavrov
	Homework \#3

1. Show that the "diamond" set $D=\{(x, y):|x|+|y| \leq 1\}$ is convex. (One way to do this, though not the only way, is to verify that D satisfies Definition 2.1.1 in the textbook.)
2. Give an example of each of the following, with justification:
(a) Functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that f and g are convex, but the composition $h(x)=g(f(x))$ is not convex.
(b) Functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that f is convex and g is increasing, but the composition $h(x)=g(f(x))$ is not convex.
(c) Functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$ such that f and g are convex, but the product $h(x)=f(x) g(x)$ is not convex.
3. Show that the functions are convex on the indicated sets.
(a) $f(x)=e^{e^{e^{x}}}$ on \mathbb{R}.
(b) $f(x, y, z)=(x+2 y)^{4}+(y-z)^{4}$ on \mathbb{R}^{3}.
(c) $f(x)=\left\{\begin{array}{ll}x & x \geq 0 \\ 0 & x<0\end{array}\right.$ on \mathbb{R}.
4. Use the AM-GM inequality to solve this optimization problem:

$$
\begin{array}{ll}
\underset{x, y, z \in \mathbb{R}}{\operatorname{minimize}} & x y^{2}+y z^{2}+z x^{2} \\
\text { subject to } & x y z=1, \\
& x, y, z>0 .
\end{array}
$$

5. (Only 4-credit students need to do this problem.)

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function. Show that the sublevel set

$$
L_{c}^{-}(f)=\left\{\mathbf{x} \in \mathbb{R}^{n}: f(\mathbf{x}) \leq c\right\}
$$

is a convex set.

