## Homework \#4

1. Consider the unconstrained geometric program

$$
\begin{array}{ll}
\underset{t_{1}, t_{2} \in \mathbb{R}}{\operatorname{minimize}} & \frac{t_{1}}{t_{2}}+t_{2}^{4}+\frac{4}{t_{1} t_{2}} \\
\text { subject to } & t_{1}, t_{2}>0 .
\end{array}
$$

(a) Write down the dual geometric program.
(b) Find the dual optimal solution.
(c) Solve for the primal optimal solution.
2. Consider the unconstrained geometric program ${ }^{1}$

$$
\begin{array}{ll}
\underset{t \in \mathbb{R}}{\operatorname{minimize}} & t^{2}+\frac{1}{t}+3 t \\
\text { subject to } & t>0 .
\end{array}
$$

(a) Write down the dual geometric program.
(b) Reduce the dual program to a 1-parameter optimization problem of the form "maximize $f(s)$ for $s$ in some open interval", as in example (2.5.5)(c) in the textbook.

Don't solve that optimization problem, though, because it looks painful. ${ }^{2}$
(c) Assuming that the optimal dual solution is $\boldsymbol{\delta}=\left(\frac{1}{15}, \frac{8}{15}, \frac{2}{5}\right)$, find the optimal value of $t$ in the primal program.
3. Consider the geometric program

$$
\begin{array}{ll}
\underset{t_{1}, t_{2} \in \mathbb{R}}{\operatorname{minimize}} & t_{1} t_{2}+\frac{1}{t_{1} t_{2}^{2}} \\
\text { subject to } & t_{1}, t_{2}>0
\end{array}
$$

(a) Find the dual program, and show that it's infeasible.
(b) Find a way to make the objective value of the primal program arbitrarily close to 0 .
4. Find the line of best fit through the points

$$
\{(-1,2),(0,1),(1,3),(2,2),(3,1)\} .
$$

[^0]
[^0]:    ${ }^{1}$ Yes, I realize that there are easier ways to solve this problem than by treating it as a geometric program.
    ${ }^{2}$ If you wanted to solve it, you'd start with your $v(\boldsymbol{\delta})=f(s)$, take the derivative of $\log f(s)$, collect everything inside the $\log$ and set it equal to 1 , and then solve the cubic equation you get to determine $s$ : this will be a critical point of $\log f(s)$, and $\log f(s)$ is concave, so the critical point will maximize $\log f(s)$, so it will maximize $f(s)$. It's not impossible. Just annoying.

