Mikhail Lavrov

Homework #4

Spring 2019

Due Friday, February 22

1. Consider the unconstrained geometric program

$$\begin{array}{ll} \underset{t_1,t_2 \in \mathbb{R}}{\text{minimize}} & \frac{t_1}{t_2} + t_2^4 + \frac{4}{t_1 t_2} \\ \text{subject to} & t_1, t_2 > 0. \end{array}$$

- (a) Write down the dual geometric program.
- (b) Find the dual optimal solution.
- (c) Solve for the primal optimal solution.
- 2. Consider the unconstrained geometric program¹

$$\begin{array}{ll} \underset{t \in \mathbb{R}}{\text{minimize}} & t^2 + \frac{1}{t} + 3t \\ \text{subject to} & t > 0. \end{array}$$

- (a) Write down the dual geometric program.
- (b) Reduce the dual program to a 1-parameter optimization problem of the form "maximize f(s) for s in some open interval", as in example (2.5.5)(c) in the textbook.

Don't solve that optimization problem, though, because it looks painful.²

- (c) Assuming that the optimal dual solution is $\boldsymbol{\delta} = (\frac{1}{15}, \frac{8}{15}, \frac{2}{5})$, find the optimal value of t in the primal program.
- 3. Consider the geometric program

$$\begin{array}{ll} \underset{t_1,t_2 \in \mathbb{R}}{\text{minimize}} & t_1 t_2 + \frac{1}{t_1 t_2^2} \\ \text{subject to} & t_1, t_2 > 0. \end{array}$$

- (a) Find the dual program, and show that it's infeasible.
- (b) Find a way to make the objective value of the primal program arbitrarily close to 0.
- 4. Find the line of best fit through the points

$$\{(-1,2), (0,1), (1,3), (2,2), (3,1)\}.$$

¹Yes, I realize that there are easier ways to solve this problem than by treating it as a geometric program.

²If you wanted to solve it, you'd start with your $v(\boldsymbol{\delta}) = f(s)$, take the derivative of $\log f(s)$, collect everything inside the log and set it equal to 1, and then solve the cubic equation you get to determine s: this will be a critical point of $\log f(s)$, and $\log f(s)$ is concave, so the critical point will maximize $\log f(s)$, so it will maximize f(s). It's not impossible. Just annoying.