Math 484: Nonlinear Programming	Mikhail Lavrov
Spring 2019	Homework \#5

1. (a) Find a polynomial $y=P(x)$ of degree at most 3 that passes through the points

$$
\{(0,5),(1,1),(2,-1),(3,5)\} .
$$

(b) Describe all polynomials of degree at most 4 that pass through the points

$$
\{(0,5),(1,1),(2,-1),(3,5)\} .
$$

2. Given the vectors

$$
\mathbf{a}=\left[\begin{array}{c}
0 \\
3 \\
-1 \\
0
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
2 \\
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{l}
6 \\
3 \\
0 \\
0
\end{array}\right]
$$

find the linear combination of \mathbf{a} and \mathbf{b} which is closest to \mathbf{c}.
3. Find the distance between the origin $(0,0,0,0)$ and the closest point $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ satisfying the equations

$$
\begin{aligned}
x_{2}+x_{3}+2 x_{4} & =7, \\
2 x_{1}-x_{2}+x_{3}+x_{4} & =-4 .
\end{aligned}
$$

4. Use the Gram-Schmidt process to find an orthonormal basis for the subspace of \mathbb{R}^{3} spanned by

$$
\mathbf{a}^{(1)}=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right], \quad \mathbf{a}^{(2)}=\left[\begin{array}{c}
-1 \\
1 \\
4
\end{array}\right], \quad \mathbf{a}^{(3)}=\left[\begin{array}{l}
2 \\
2 \\
0
\end{array}\right], \quad \mathbf{a}^{(4)}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right] .
$$

