1. Solve the optimization problem

$$
\begin{array}{cl}
\underset{x, y, z \in \mathbb{R}}{\operatorname{minimize}} & x^{2}-x y+y^{2}+z^{2} \\
\text { subject to } & 3 x+z=13, \\
& 3 x-3 y+2 z=8 .
\end{array}
$$

2. Let C be the convex set $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y \leq 2\right.$ and $\left.x+y^{2} \leq 2\right\}$.

Using the fact that $(1,1)$ is the point of C closest to $(3,4)$, find a linear inequality which is true for every point of C, false for $(3,4)$, and holds with equality at $(1,1)$.
3. Let C be the convex set $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y \leq 2\right.$ and $\left.x+y^{2} \leq 2\right\}$.

Using the fact that $(1,1)$ is the point of C closest to $(3,4)$ and that $(1,1)$ is the point of C closest to $(5,3)$, deduce that $(1,1)$ is also the point of C closest to $(7,6)$.
4. For each of the following sets, determine their interior, boundary, and closure. You do not have to justify your answer.
(a) $S_{1}=[1,2) \cup(3,4) \cup(4, \infty) \subseteq \mathbb{R}$.
(b) $S_{2}=\left\{(x, y) \in \mathbb{R}^{2}: y=x\right.$ and $\left.y \neq 0\right\}$.
(c) $S_{3}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}<1\right\}-\{(0,0,0)\}$.
5. (For 4 -credit students only. There are no actual students enrolled in this course for 4 credits this semester, but you should think about this problem a little if you have the time.)
Let A be a positive definite $n \times n$ matrix, and consider the function $f(\mathbf{x})=\mathbf{x}^{\top} A \mathbf{x}$.
Show that $\frac{f(\mathbf{x})}{\|\mathbf{x}\|^{2}}$ has a global minimizer on $\mathbb{R}^{n}-\{\mathbf{0}\}$. (Hint: the extreme value theorem doesn't apply directly to $\mathbb{R}^{n}-\{\mathbf{0}\}$, which is neither closed nor bounded, but can you make it apply?)
Here's (one reason) why this is useful. Let ϵ be the minimum value of $\frac{f(\mathbf{x})}{\|\mathbf{x}\|^{2}}$; we must have $\epsilon>0$ because A is positive definite so both parts of the fraction are positive. Then we have $f(\mathbf{x}) \geq \epsilon\|\mathbf{x}\|^{2}$ for all \mathbf{x}, which can be used to show that $f(\mathbf{x})$ is coercive.

