Homework \#8
Spring 2019

1. Solve the following problem by using KKT duality:

$$
\begin{array}{ll}
\underset{(x, y) \in \mathbb{R}^{2}}{\operatorname{minimize}} & x^{2}+2 y \\
\text { subject to } & x+y \geq 3
\end{array}
$$

2. Solve the following geometric program:

$$
\begin{array}{ll}
\underset{(x, y, z) \in \mathbb{R}^{3}}{\operatorname{minimize}} & \frac{1}{x}+\frac{2}{y}+\frac{4}{z} \\
\text { subject to } & x y z \leq 1, \\
& x>0, y>0, z>0 .
\end{array}
$$

3. Among the constraints below, four can be expressed using posynomial constraints (constraints that can appear in a geometric program), and one cannot.

For the ones that can, show how, and say which one is impossible.
(a) $x y \geq 1$
(b) $x^{2}+y^{2} \leq z^{2}$
(c) $x^{2}-y^{2} \geq z^{2}$
(d) $x-y \leq 1$
(e) $x^{2} y^{-1}=1$
4. Solve the optimization problem

$$
\begin{array}{ll}
\underset{x, y \in \mathbb{R}}{\operatorname{minimize}} & x+y^{2} \\
\text { subject to } & x^{2}-y^{2}+1 \leq 0
\end{array}
$$

by turning the constraint into a quadratic penalty term, minimizing

$$
x+y^{2}+M\left(\max \left\{0, x^{2}-y^{2}+1\right\}\right)^{2},
$$

and taking a limit as $M \rightarrow \infty$.
(Hint: one of the critical points of the penalized function has $y=0$, but that can't possibly converge to an optimal solution-why?)

