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Conway’s soldiers

Conway’s soldiers or solitaire army is a mathematical puzzle
based on the rules of peg solitaire.

The setup is an infinite board with pegs everywhere below a
certain line:

The goal: to get a peg as far above the line as possible.
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Warm-up: how many jumps?

Theorem. We need at least 7 jumps to get to row 3.

Proof. We can assign “point values” based on how close our pegs
get to a target in row 3:

21
8 13 8

3 5 8 5 3
1 1 1 2 3 5 3 2 1 1 1

1 1 1 1 2 3 2 1 1 1 1

21 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

Check: any jump replaces two pegs by one peg with at most the
same point value!

So we need to use pegs below the line with a total point value of at
least 21. This takes at least 8 pegs: 5 + 3 + 3 + 3 + 2 + 2 + 2 + 1.



Warm-up: how many jumps?

Theorem. We need at least 7 jumps to get to row 3.

Proof. We can assign “point values” based on how close our pegs
get to a target in row 3:

21
8 13 8

3 5 8 5 3
1 1 1 2 3 5 3 2 1 1 1

1 1 1 1 2 3 2 1 1 1 1

21 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

Check: any jump replaces two pegs by one peg with at most the
same point value!

So we need to use pegs below the line with a total point value of at
least 21. This takes at least 8 pegs: 5 + 3 + 3 + 3 + 2 + 2 + 2 + 1.



Warm-up: how many jumps?

Theorem. We need at least 7 jumps to get to row 3.

Proof. We can assign “point values” based on how close our pegs
get to a target in row 3:

21
8 13 8

3 5 8 5 3
1 1 1 2 3 5 3 2 1 1 1

1 1 1 1 2 3 2 1 1 1 1

21 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

Check: any jump replaces two pegs by one peg with at most the
same point value!

So we need to use pegs below the line with a total point value of at
least 21. This takes at least 8 pegs: 5 + 3 + 3 + 3 + 2 + 2 + 2 + 1.



Warm-up: how many jumps?

Theorem. We need at least 7 jumps to get to row 3.

Proof. We can assign “point values” based on how close our pegs
get to a target in row 3:

21
8 13 8

3 5 8 5 3
1 1 1 2 3 5 3 2 1 1 1

1 1 1 1 2 3 2 1 1 1 1

21 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

Check: any jump replaces two pegs by one peg with at most the
same point value!

So we need to use pegs below the line with a total point value of at
least 21. This takes at least 8 pegs: 5 + 3 + 3 + 3 + 2 + 2 + 2 + 1.



The golden ratio

Our point values on the previous slide work because 8 + 13 = 21,
5 + 8 = 13, 2 + 3 = 5, 1 + 2 = 3, and 1 + 1 = 2. This works, but
is not very systematic.

Idea: what if we pick a “magic constant” x and give our pegs
value 1

xk if they’re k steps away from the target? Then we need:

1

xk+2
+

1

xk+1
=

1

xk
⇐⇒ 1 + x = x2 ⇐⇒ x =

1±
√
5

2
.

Picking x = 1−
√
5

2 is weird (negative point values) but x = 1+
√
5

2
works!

The number 1+
√
5

2 ≈ 1.618 is called the Golden ratio. It shows up
in many places in nature, art, and peg solitaire games.
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Theorem. We can never get to row 5.

Proof. Assign point values to pegs as on the previous slide—a peg
k steps from the target is worth 1
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+
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+ · · · = 1.

So no finite number of pegs can reach the target!
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Thomson’s lamp paradox

Philosophical question.

You have a light bulb. At time t = 0,
you turn it on.


0


1


1.5


1.75


1.875

?
2

At time t = 1, you turn it off. At time t = 1.5, you turn it on
again. You continue this, halving the intervals each time. At time
t = 2, is the light bulb on or off?

Inspired by this, we can ask: can we get to Row 5 by doing
infinitely many moves in finite time?

Negatively inspired by this, we will add a rule: each cell of our
grid should only change state finitely many times.



Thomson’s lamp paradox

Philosophical question. You have a light bulb. At time t = 0,
you turn it on.


0


1


1.5


1.75


1.875

?
2

At time t = 1, you turn it off. At time t = 1.5, you turn it on
again. You continue this, halving the intervals each time. At time
t = 2, is the light bulb on or off?

Inspired by this, we can ask: can we get to Row 5 by doing
infinitely many moves in finite time?

Negatively inspired by this, we will add a rule: each cell of our
grid should only change state finitely many times.



Thomson’s lamp paradox

Philosophical question. You have a light bulb. At time t = 0,
you turn it on.


0


1


1.5


1.75


1.875

?
2

At time t = 1, you turn it off.

At time t = 1.5, you turn it on
again. You continue this, halving the intervals each time. At time
t = 2, is the light bulb on or off?

Inspired by this, we can ask: can we get to Row 5 by doing
infinitely many moves in finite time?

Negatively inspired by this, we will add a rule: each cell of our
grid should only change state finitely many times.



Thomson’s lamp paradox

Philosophical question. You have a light bulb. At time t = 0,
you turn it on.


0


1


1.5


1.75


1.875

?
2

At time t = 1, you turn it off. At time t = 1.5, you turn it on
again.

You continue this, halving the intervals each time. At time
t = 2, is the light bulb on or off?

Inspired by this, we can ask: can we get to Row 5 by doing
infinitely many moves in finite time?

Negatively inspired by this, we will add a rule: each cell of our
grid should only change state finitely many times.



Thomson’s lamp paradox

Philosophical question. You have a light bulb. At time t = 0,
you turn it on.


0


1


1.5


1.75


1.875

?
2

At time t = 1, you turn it off. At time t = 1.5, you turn it on
again. You continue this, halving the intervals each time. At time
t = 2, is the light bulb on or off?

Inspired by this, we can ask: can we get to Row 5 by doing
infinitely many moves in finite time?

Negatively inspired by this, we will add a rule: each cell of our
grid should only change state finitely many times.



Thomson’s lamp paradox

Philosophical question. You have a light bulb. At time t = 0,
you turn it on.


0


1


1.5


1.75


1.875

?
2

At time t = 1, you turn it off. At time t = 1.5, you turn it on
again. You continue this, halving the intervals each time. At time
t = 2, is the light bulb on or off?

Inspired by this, we can ask: can we get to Row 5 by doing
infinitely many moves in finite time?

Negatively inspired by this, we will add a rule: each cell of our
grid should only change state finitely many times.



Thomson’s lamp paradox

Philosophical question. You have a light bulb. At time t = 0,
you turn it on.


0


1


1.5


1.75


1.875

?
2

At time t = 1, you turn it off. At time t = 1.5, you turn it on
again. You continue this, halving the intervals each time. At time
t = 2, is the light bulb on or off?

Inspired by this, we can ask: can we get to Row 5 by doing
infinitely many moves in finite time?

Negatively inspired by this, we will add a rule: each cell of our
grid should only change state finitely many times.



The “whoosh”

Can we solve a 1-dimensional infinite solitaire puzzle?

...

t = 0 t = 1
2 t = 3

4 t = 7
8

t = 15
16 t = 17

16 t = 9
8 t = 5

4 t = 3
2 t = 2



The “whoosh”

Can we solve a 1-dimensional infinite solitaire puzzle?

...
...

t = 0 t = 1
2 t = 3

4 t = 7
8

t = 15
16 t = 17

16 t = 9
8 t = 5

4 t = 3
2 t = 2



The “whoosh”

Can we solve a 1-dimensional infinite solitaire puzzle?

...
...

...

t = 0 t = 1
2 t = 3

4 t = 7
8

t = 15
16 t = 17

16 t = 9
8 t = 5

4 t = 3
2 t = 2



The “whoosh”

Can we solve a 1-dimensional infinite solitaire puzzle?

...
...

...
...

t = 0 t = 1
2 t = 3

4 t = 7
8

t = 15
16 t = 17

16 t = 9
8 t = 5

4 t = 3
2 t = 2



The “whoosh”

Can we solve a 1-dimensional infinite solitaire puzzle?

...
...

...
...

...

· · ·

t = 0 t = 1
2 t = 3

4 t = 7
8

t = 15
16 t = 17

16 t = 9
8 t = 5

4 t = 3
2 t = 2



The “whoosh”

Can we solve a 1-dimensional infinite solitaire puzzle?

...
...

...
...

...

· · ·

...

t = 0 t = 1
2 t = 3

4 t = 7
8

t = 15
16 t = 17

16 t = 9
8 t = 5

4 t = 3
2 t = 2



The “whoosh”

Can we solve a 1-dimensional infinite solitaire puzzle?

...
...

...
...

...

· · ·

...
...

t = 0 t = 1
2 t = 3

4 t = 7
8

t = 15
16 t = 17

16 t = 9
8 t = 5

4 t = 3
2 t = 2



The “whoosh”

Can we solve a 1-dimensional infinite solitaire puzzle?

...
...

...
...

...

· · ·

...
...

...

t = 0 t = 1
2 t = 3

4 t = 7
8

t = 15
16 t = 17

16 t = 9
8 t = 5

4 t = 3
2 t = 2



The “whoosh”

Can we solve a 1-dimensional infinite solitaire puzzle?

...
...

...
...

...

· · ·

...
...

...
...

t = 0 t = 1
2 t = 3

4 t = 7
8

t = 15
16 t = 17

16 t = 9
8 t = 5

4 t = 3
2 t = 2



The “whoosh”

Can we solve a 1-dimensional infinite solitaire puzzle?

...
...

...
...

...

· · ·

...
...

...
...

...

t = 0 t = 1
2 t = 3

4 t = 7
8

t = 15
16 t = 17

16 t = 9
8 t = 5

4 t = 3
2 t = 2



The “whoosh”

Can we solve a 1-dimensional infinite solitaire puzzle?

...
...

...
...

...

· · ·

...
...

...
...

...
t = 0 t = 1

2 t = 3
4 t = 7

8
t = 15

16 t = 17
16 t = 9

8 t = 5
4 t = 3

2 t = 2



The first half of infinity

Halfway there!



The first half of infinity

Halfway there!



The first half of infinity

Halfway there!



The first half of infinity

Halfway there!



The first half of infinity

Halfway there!



The first half of infinity

Halfway there!



The first half of infinity

Halfway there!



Alan Lee’s solution

After infinitely many steps, we have reached row 5!



Alan Lee’s solution

After infinitely many steps, we have reached row 5!



Alan Lee’s solution

After infinitely many steps, we have reached row 5!



Alan Lee’s solution

After infinitely many steps, we have reached row 5!



Alan Lee’s solution

After infinitely many steps, we have reached row 5!



Alan Lee’s solution

After infinitely many steps, we have reached row 5!



Alan Lee’s solution

After infinitely many steps, we have reached row 5!



Credits

Solitaire army was invented by John Conway in 1961, who
proved that row 5 cannot be reached in finitely many moves.

Simon Tatham first formulated the rules for reaching row 5
in infinitely many moves.

Simon Tatham and Gareth Taylor together found a solution
with infinitely many moves.

Alan Lee invented the diagonal whoosh, creating the
simplified solution we saw today.

All I did was put together these slides, and make an animation of
Alan’s solution, which we can go watch at:

https://misha.fish/solitaire

https://misha.fish/solitaire
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