How a quadratic equation solves peg solitaire

Misha Lavrov

April 22, 2023
Kennesaw Math Competition Awards Ceremony

Peg solitaire

Peg solitaire is a game where you place pegs in a grid...

Peg solitaire

Peg solitaire is a game where you place pegs in a grid...

... and you can jump pegs over other pegs to remove them.

Peg solitaire

Peg solitaire is a game where you place pegs in a grid...

... and you can jump pegs over other pegs to remove them.
The goal is to eliminate all pegs except one.

Peg solitaire

Peg solitaire is a game where you place pegs in a grid...

... and you can jump pegs over other pegs to remove them.
The goal is to eliminate all pegs except one.

Peg solitaire

Peg solitaire is a game where you place pegs in a grid...

... and you can jump pegs over other pegs to remove them.
The goal is to eliminate all pegs except one.

Peg solitaire

Peg solitaire is a game where you place pegs in a grid...

... and you can jump pegs over other pegs to remove them.
The goal is to eliminate all pegs except one.

Peg solitaire

Peg solitaire is a game where you place pegs in a grid...

... and you can jump pegs over other pegs to remove them.
The goal is to eliminate all pegs except one.

Peg solitaire

Peg solitaire is a game where you place pegs in a grid...

... and you can jump pegs over other pegs to remove them.
The goal is to eliminate all pegs except one.

Peg solitaire

Peg solitaire is a game where you place pegs in a grid...

... and you can jump pegs over other pegs to remove them.
The goal is to eliminate all pegs except one.

Peg solitaire

Peg solitaire is a game where you place pegs in a grid...

... and you can jump pegs over other pegs to remove them.
The goal is to eliminate all pegs except one.

Peg solitaire

Peg solitaire is a game where you place pegs in a grid...

... and you can jump pegs over other pegs to remove them.
The goal is to eliminate all pegs except one. We did it!

Conway's soldiers

Conway's soldiers or solitaire army is a mathematical puzzle based on the rules of peg solitaire.

The setup is an infinite board with pegs everywhere below a certain line:

Conway's soldiers

Conway's soldiers or solitaire army is a mathematical puzzle based on the rules of peg solitaire.

The setup is an infinite board with pegs everywhere below a certain line:

The goal: to get a peg as far above the line as possible.

How high can we go?

\bigcirc	O	0		-	-	-	O	O	\bigcirc	\bigcirc	O	\bigcirc
\bigcirc	O	0		0	-	-	O	-	\bigcirc	\bigcirc	0	\bigcirc
\bigcirc	O	0		O	-	O	O	-	0	\bigcirc	O	\bigcirc
\bigcirc	O	0		O	-	O	0	0	O	\bigcirc	O	\bigcirc

How high can we go?

						-						
\bigcirc	O	0		-	-	9	\bigcirc	O	O		O	\bigcirc
\bigcirc	O	0		0	\bigcirc)	\bigcirc	O	0		-	\bigcirc
\bigcirc	O	O		O	\bigcirc	O	\bigcirc	O	0	O	-	O
\bigcirc	O	0	-	O	\bigcirc	\bigcirc	\bigcirc	O	O	O	-	O

How high can we go?

How high can we go? Row 2!

						-						
\bigcirc	O	0					-	-	O		\bigcirc	\bigcirc
\bigcirc	O	0	O		O		-	-	0		\bigcirc	\bigcirc
\bigcirc	O	0	O		O	O	\bigcirc	0	0		\bigcirc	\bigcirc
\bigcirc	O	O	O		O	-	\bigcirc	O	O	O	-	\bigcirc

How high can we go? Row 2!

How high can we go? Row 2!

How high can we go? Row 2! Row 3!

How high can we go? Row 2! Row 3!

					-	-					
\bigcirc	\bigcirc	O		-					\bullet	-	O
\bigcirc	O	O	-	-					\bigcirc	0	O
\bigcirc	O	O	-	-	-	-	-	-	-	O	\bigcirc
\bigcirc	O	O	O	O	-	-	-	\bigcirc	\bigcirc	O	\bigcirc

How high can we go? Row 2! Row 3!

					\bullet						
\bigcirc	\bigcirc	O		-	\bullet				-	-	\bigcirc
\bigcirc	O	0	-						\bigcirc	O	\bigcirc
O	O	O	7		\bullet	-	-	-	-	O	\bigcirc
\bigcirc	O	O	O	O	-	-	-	-	\bigcirc	O	\bigcirc

How high can we go? Row 2! Row 3!

					\bullet						
					-						
\bigcirc	\bigcirc	O			O				-	-	\bigcirc
\bigcirc	0	0			k				0	O	\bigcirc
\bigcirc	\bigcirc	O			c	-	-	-	-	O	O
\bigcirc	\bigcirc	O	O	O		-	0	0	-	O	\bigcirc

How high can we go? Row 2! Row 3!

How high can we go? Row 2! Row 3!

How high can we go? Row 2! Row 3! Row 4!

						0					

Warm-up: how many jumps?

Theorem. We need at least 7 jumps to get to row 3 .

Warm-up: how many jumps?

Theorem. We need at least 7 jumps to get to row 3 .
Proof. We can assign "point values" based on how close our pegs get to a target in row 3:

					8	1	3	8		

Warm-up: how many jumps?

Theorem. We need at least 7 jumps to get to row 3 .
Proof. We can assign "point values" based on how close our pegs get to a target in row 3:

						2					
						21					
					8	13	8				
				3	5	8	5	3			
1	1	1	2	3	5	3	2	1	1	1	
1	1	1	1	2	3	2	1	1	1	1	
1	1	1	1	1	2	1	1	1	1	1	
1	1	1	1	1	1	1	1	1	1	1	

Check: any jump replaces two pegs by one peg with at most the same point value!

Warm-up: how many jumps?

Theorem. We need at least 7 jumps to get to row 3 .
Proof. We can assign "point values" based on how close our pegs get to a target in row 3:

						2					
						21					
					8	13	8				
				3	5	8	5	3			
1	1	1	2	3	5	3	2	1	1	1	
1	1	1	1	2	3	2	1	1	1	1	
1	1	1	1	1	2	1	1	1	1	1	
	1	1	1	1	1	1	1	1	1	1	1

Check: any jump replaces two pegs by one peg with at most the same point value!

So we need to use pegs below the line with a total point value of at least 21. This takes at least 8 pegs: $5+3+3+3+2+2+2+1$.

The golden ratio

Our point values on the previous slide work because $8+13=21$, $5+8=13,2+3=5,1+2=3$, and $1+1=2$. This works, but is not very systematic.

The golden ratio

Our point values on the previous slide work because $8+13=21$, $5+8=13,2+3=5,1+2=3$, and $1+1=2$. This works, but is not very systematic.

Idea: what if we pick a "magic constant" x and give our pegs value $\frac{1}{x^{k}}$ if they're k steps away from the target?

The golden ratio

Our point values on the previous slide work because $8+13=21$, $5+8=13,2+3=5,1+2=3$, and $1+1=2$. This works, but is not very systematic.

Idea: what if we pick a "magic constant" x and give our pegs value $\frac{1}{x^{k}}$ if they're k steps away from the target? Then we need:

$$
\frac{1}{x^{k+2}}+\frac{1}{x^{k+1}}=\frac{1}{x^{k}}
$$

The golden ratio

Our point values on the previous slide work because $8+13=21$, $5+8=13,2+3=5,1+2=3$, and $1+1=2$. This works, but is not very systematic.

Idea: what if we pick a "magic constant" x and give our pegs value $\frac{1}{x^{k}}$ if they're k steps away from the target? Then we need:

$$
\frac{1}{x^{k+2}}+\frac{1}{x^{k+1}}=\frac{1}{x^{k}} \Longleftrightarrow 1+x=x^{2}
$$

The golden ratio

Our point values on the previous slide work because $8+13=21$, $5+8=13,2+3=5,1+2=3$, and $1+1=2$. This works, but is not very systematic.

Idea: what if we pick a "magic constant" x and give our pegs value $\frac{1}{x^{k}}$ if they're k steps away from the target? Then we need:

$$
\frac{1}{x^{k+2}}+\frac{1}{x^{k+1}}=\frac{1}{x^{k}} \Longleftrightarrow 1+x=x^{2} \Longleftrightarrow x=\frac{1 \pm \sqrt{5}}{2}
$$

The golden ratio

Our point values on the previous slide work because $8+13=21$, $5+8=13,2+3=5,1+2=3$, and $1+1=2$. This works, but is not very systematic.

Idea: what if we pick a "magic constant" x and give our pegs value $\frac{1}{x^{k}}$ if they're k steps away from the target? Then we need:

$$
\frac{1}{x^{k+2}}+\frac{1}{x^{k+1}}=\frac{1}{x^{k}} \Longleftrightarrow 1+x=x^{2} \Longleftrightarrow x=\frac{1 \pm \sqrt{5}}{2}
$$

Picking $x=\frac{1-\sqrt{5}}{2}$ is weird (negative point values) but $x=\frac{1+\sqrt{5}}{2}$ works!

The golden ratio

Our point values on the previous slide work because $8+13=21$, $5+8=13,2+3=5,1+2=3$, and $1+1=2$. This works, but is not very systematic.

Idea: what if we pick a "magic constant" x and give our pegs value $\frac{1}{x^{k}}$ if they're k steps away from the target? Then we need:

$$
\frac{1}{x^{k+2}}+\frac{1}{x^{k+1}}=\frac{1}{x^{k}} \Longleftrightarrow 1+x=x^{2} \Longleftrightarrow x=\frac{1 \pm \sqrt{5}}{2}
$$

Picking $x=\frac{1-\sqrt{5}}{2}$ is weird (negative point values) but $x=\frac{1+\sqrt{5}}{2}$ works!

The number $\frac{1+\sqrt{5}}{2} \approx 1.618$ is called the Golden ratio. It shows up in many places in nature, art, and peg solitaire games.

Getting to row 5

Theorem. We can never get to row 5 .

Getting to row 5

Theorem. We can never get to row 5 .
Proof. Assign point values to pegs as on the previous slide—a peg k steps from the target is worth $\frac{1}{x^{k}}$:

					T						
				$\frac{1}{x^{2}}$	$\frac{1}{x}$	$\frac{1}{x^{2}}$					
			$\frac{1}{x^{4}}$	$\frac{1}{x^{3}}$	$\frac{1}{x^{2}}$	$\frac{1}{x^{3}}$	$\frac{1}{x^{4}}$				
		$\frac{1}{x^{6}}$	$\frac{1}{x^{5}}$	$\frac{1}{x^{4}}$	$\frac{1}{x^{3}}$	$\frac{1}{x^{4}}$	$\frac{1}{x^{5}}$	$\frac{1}{x^{6}}$			
	$\frac{1}{z^{5}}$	$\frac{1}{x^{\top}}$	$\frac{1}{x^{6}}$	$\frac{1}{x^{5}}$	$\frac{1}{x^{4}}$	$\frac{1}{x^{5}}$	$\frac{1}{x^{6}}$	$\frac{1}{x^{7}}$	$\frac{1}{x^{*}}$		
-	$\stackrel{1}{4}$	$\frac{1}{x^{*}}$	$\frac{1}{x^{\prime}}$	$\frac{1}{x^{6}}$	$\frac{1}{x^{5}}$	$\frac{1}{x^{5}}$	$\frac{1}{x^{\top}}$	$\frac{1}{x^{*}}$	$\frac{1}{x}$	-	

Getting to row 5

Theorem. We can never get to row 5 .
Proof. Assign point values to pegs as on the previous slide—a peg k steps from the target is worth $\frac{1}{x^{k}}$:

						7						
					$\frac{1}{x^{2}}$	$\frac{1}{x}$	$\frac{1}{x^{2}}$					
				$\frac{1}{x^{4}}$	$\frac{1}{x^{3}}$	$\frac{1}{x^{2}}$	$\frac{1}{x^{3}}$	$\frac{1}{x^{4}}$				
			$\frac{1}{x^{6}}$	$\frac{1}{x^{5}}$	$\frac{1}{x^{4}}$	$\frac{1}{x^{3}}$	$\frac{1}{x^{4}}$	$\frac{1}{x^{5}}$	$\frac{1}{x^{6}}$			
			$\frac{1}{x^{5}}$	$\frac{1}{x^{7}}$	$\frac{1}{x^{6}}$	$\frac{1}{x^{5}}$	$\frac{1}{x^{4}}$	$\frac{1}{x^{5}}$	$\frac{1}{x^{6}}$	$\frac{1}{x^{7}}$	$\frac{1}{x^{7}}$	

The total value of all the pegs we start with is

$$
\frac{1}{x^{5}}+\frac{3}{x^{6}}+\frac{5}{x^{7}}+\frac{7}{x^{8}}+\frac{9}{x^{9}}+\cdots
$$

Getting to row 5

Theorem. We can never get to row 5 .
Proof. Assign point values to pegs as on the previous slide—a peg k steps from the target is worth $\frac{1}{x^{k}}$:

The total value of all the pegs we start with is

$$
\frac{1}{x^{5}}+\frac{3}{x^{6}}+\frac{5}{x^{7}}+\frac{7}{x^{8}}+\frac{9}{x^{9}}+\cdots=1 .
$$

Getting to row 5

Theorem. We can never get to row 5 .
Proof. Assign point values to pegs as on the previous slide-a peg k steps from the target is worth $\frac{1}{x^{k}}$:

The total value of all the pegs we start with is

$$
\frac{1}{x^{5}}+\frac{3}{x^{6}}+\frac{5}{x^{7}}+\frac{7}{x^{8}}+\frac{9}{x^{9}}+\cdots=1 .
$$

So no finite number of pegs can reach the target!

Thomson's lamp paradox

Philosophical question.

Thomson's lamp paradox

Philosophical question. You have a light bulb. At time $t=0$, you turn it on.

Thomson's lamp paradox

Philosophical question. You have a light bulb. At time $t=0$, you turn it on.

At time $t=1$, you turn it off.

Thomson's lamp paradox

Philosophical question. You have a light bulb. At time $t=0$, you turn it on.

At time $t=1$, you turn it off. At time $t=1.5$, you turn it on again.

Thomson's lamp paradox

Philosophical question. You have a light bulb. At time $t=0$, you turn it on.

At time $t=1$, you turn it off. At time $t=1.5$, you turn it on again. You continue this, halving the intervals each time. At time $t=2$, is the light bulb on or off?

Thomson's lamp paradox

Philosophical question. You have a light bulb. At time $t=0$, you turn it on.

At time $t=1$, you turn it off. At time $t=1.5$, you turn it on again. You continue this, halving the intervals each time. At time $t=2$, is the light bulb on or off?

Inspired by this, we can ask: can we get to Row 5 by doing infinitely many moves in finite time?

Thomson's lamp paradox

Philosophical question. You have a light bulb. At time $t=0$, you turn it on.

At time $t=1$, you turn it off. At time $t=1.5$, you turn it on again. You continue this, halving the intervals each time. At time $t=2$, is the light bulb on or off?

Inspired by this, we can ask: can we get to Row 5 by doing infinitely many moves in finite time?

Negatively inspired by this, we will add a rule: each cell of our grid should only change state finitely many times.

The "whoosh"

Can we solve a 1-dimensional infinite solitaire puzzle?

The "whoosh"

Can we solve a 1-dimensional infinite solitaire puzzle?

The "whoosh"

Can we solve a 1-dimensional infinite solitaire puzzle?

The "whoosh"

Can we solve a 1-dimensional infinite solitaire puzzle?

The "whoosh"

Can we solve a 1-dimensional infinite solitaire puzzle?

The "whoosh"

Can we solve a 1-dimensional infinite solitaire puzzle?

The "whoosh"

Can we solve a 1-dimensional infinite solitaire puzzle?

The "whoosh"

Can we solve a 1-dimensional infinite solitaire puzzle?

The "whoosh"

Can we solve a 1-dimensional infinite solitaire puzzle?

The "whoosh"

Can we solve a 1-dimensional infinite solitaire puzzle?

$\cdots \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$
$-\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \mid$

\section*{| |
| ---: |
| |
| |
| |
| |
| |
| |
| |}

The "whoosh"

Can we solve a 1-dimensional infinite solitaire puzzle?

The first half of infinity

-		-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	\bullet
-		-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
-		-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-		-	\bullet
-		-	-	-		-	-	-	-	-			-	-	-	-	-	-		-	-	-
-		-	-	-		-	-	-	-	-	-		-		-	-	-	-	-	-	-	-
-		-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	\bullet
-								-									-	-			-	
-		-	-	-	-	-	-	-	-	-			-		-	-	-	-	-	-	-	-

The first half of infinity

-		\cdots		\cdots	\cdots	\cdots		-										\cdots	\cdots	-	-	-	-
-						d	-	C		-	-	-	-	-	-			O		d	d		d
\checkmark	,	7	H	\dagger	-		7	-		-	-	-	-	-	-	7)	7	7	7	7		7
-					-	-		-		-	-	-	-					-	-	-	-	-	\bullet
-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-		-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	\bullet
-		-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	\bullet
-		-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-
-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

The first half of infinity

-		-	-	-	-	-	-	-								-		-	-	-	-		-	-
										-	-	-	-	-										
-		\cdots	\cdots	-	-	-				-	-	-	-	-				-	-	\cdots	-	\cdots	-	-
d		-	-	d	d	d	-	-		-	-	-	-	-	-	-		d	-	-	-			
1		1	1		1	1	-	-		-	-	-	-	-	-	-		1)	1)			
-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-			
-		-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	
-		-	-		-	-	-			-		-	-			-		-	-	-	-			
-		-	-	-	-	-	-	-		-		-	-	-	-	-		-	-	-	-		-	-

The first half of infinity

-	-		-	-	-	-	-	-							-	-	-	-		-	-	-	\bullet
										-		-	-	-									
-	-		-	-	-	-				-	-	-	-	-			-	-	-	-	-	-	-
							-	-		-	-	-	-	-	-	-							
-	\bullet		\cdots	-			-	-		-	-	-	-	-	-	-				-	-	-	\cdots
-	-		-	d	-	-	-	-		-	-	-	-	-	-	-	-	-		-	-	1	d
	-	,	7	7	-	-	-	-		-	-	-	-	-	-	-		-				7	
	-	-	-		-	-	-					-	-	-	-			-		-	-	-	\bullet
-	-	-	-	-	-	-	-	-		-		-	-	-	-	-			-	-	-	-	\bullet

The first half of infinity

-			-	-	-	-	-	-							-	-		-	-		-	-	\bullet
										-	-	-	-	-									
-	-		-	-	-	-				-	-	-	-	-			-	-	-	-	-	-	-
							-	-	-		-	-	-	-	-	-							
\bullet			-	-			-	-	-	-		-	-	-	-	-			-	-	-	-	-
					-	-	-	-	-			-	-	-	-	-		-					
	-				-	-	-	-	-	-		-	-	-	-	-	-	-				-	-
c			-	-	-	-	-	-	-	-		-	-	-	-	-	-	-			-	c)	
,			-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	,	-

The first half of infinity

The first half of infinity

Halfway there!

Alan Lee's solution

										-		-										
									-	-	-	-	-									
								-	-	-	-	-	-	-								
							-	-	-	-	-	-	-	-	-	-						
					-		-	-	-	-	-	-	-	-	-		-					
				-	-	-		-	-	-	-	-	-	-	-		-	-				
			-	-	\bullet	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
		-	-	-	-			-	-	-	-	-	-	-				-	-	-		
	-	-	-	-	-			-	-	-	-	-	-	-	-		-	-	-	-	-	

Alan Lee's solution

After infinitely many steps, we have reached row 5 !

Credits

- Solitaire army was invented by John Conway in 1961, who proved that row 5 cannot be reached in finitely many moves.

■ Simon Tatham first formulated the rules for reaching row 5 in infinitely many moves.

■ Simon Tatham and Gareth Taylor together found a solution with infinitely many moves.

■ Alan Lee invented the diagonal whoosh, creating the simplified solution we saw today.

All I did was put together these slides, and make an animation of Alan's solution, which we can go watch at:
https://misha.fish/solitaire

